Efficient Sampling Strategies to Estimate Extremely Low Probabilities

Cédric J. Sallaberry, Robert E. Kurth, Frederick W. Brust, Elizabeth A. Kurth-Twombly

Engineering Mechanics Corporation of Columbus (Emc²) 3518 Riverside Drive - Suite 202 Columbus, OH 43221-1735 Phone: (614) 459-3200 Fax: (614) 459-6800

Materials, Structural Integrity and Reliability Solutions Through Innovative Engineering

Context

- The result of active degradation mechanisms, primarily Primary Water Stress Corrosion Cracking (PWSCC), presented challenges to the Leak Before Break (LBB) analysis
- The US Nuclear Regulatory Commission (USNRC) and the Electric Power Research Institute (EPRI) develop jointly a probabilistic fracture mechanics code to assess LBB: xLPR (extremely Low Probability of Rupture)
- The extremely low occurrence of events (10⁻⁶ range) requires optimization of the sampling based methods in order to generate adverse events when using reasonable sample size.
- Approach derived:
 - Sampling strategy with denser covering of either each input or the multidimensional space
 - Sensitivity Analysis to identify uncertain parameters driving the output of interest (topic of another presentation PSAM-102)
 - Use of Importance Sampling

Sampling strategies

Simple Random Sampling (SRS)

- Corresponds to the original Monte Carlo approach
- Used as reference

Latin Hypercube Sampling (LHS)

- Stratification of each input into equiprobable segments.
- Sample each segment once
- Assemble randomly (or using correlation control) between inputs

Discrete Probability Distribution (DPD)

- Discretize each distribution according to a number of strata
- Use the conditional expected value for each strata (not the mid-point)
- Sample randomly the resulting discrete distribution

Example problem for comparison

- Sampling of two variables $X_1 \sim N(\mu = 10; \sigma = 1)$ and $X_2 \sim LN(\mu = 2; \sigma = 1.5)$
- Sample of size 50. DPD uses 10 strata

example of sampled values for a sample of size 50

 ${\cal 9}$ Materials, Structural Integrity and Reliability Solutions Through Innovative Engineering

 $= mc^2$

Results

Dense coverage of each input with LHS. Helps if extreme values are needed.

Better multi-dimensional coverage for DPD. Helps in conjoint influence.

Importance Sampling

- Variance reduction technique
- Purpose is to oversample the region of interest and under-sample the regions with no events.

• Weighting of each realization to reflect the area it represents.

Limitations

- Importance sampling requires knowledge of:
 - Which input parameters need to have importance sampling
 - Which region needs to be over sampled
- Too many parameters with importance sampling brings dilution (not efficient importance sampling) or too much focus (weights are all too small to represent the problem correctly)
- Missing the region or choosing the wrong inputs leads to results potentially worse than with regular sampling

Use of Sensitivity Analysis as support

- Sensitivity Analysis rank the input variables in term of importance to the uncertainty in the output of interest
- Scatterplots can help identify the region of most importance
- Using Sensitivity Analysis on a first set of sample results providing that one has at least some events occurring helps set up a more appropriate importance sampling strategy
- If no events occur, surrogate outputs can be used (for instance, if no cracks rupture, select through wall cracks or deepest/largest cracks)

Computational model used

- xLPR V2.0 soon to be released
- Deterministic Models, using more than 500 inputs (most can be uncertain in the probabilistic version)

• Large number of submodels

- Crack Initiation (coalescence and transition)
- Crack Growth (SCC and fatigue) growth at deepest and surface points
- Crack Stability (J-tearing theory)
- ISI

mc

- COD
- Leak Rate and detection capability
- Weld Residual Stresses play a key role for SCC
- K-solutions (weight function approach)
- WRS mitigation
- One deterministic calculation takes ~4 seconds.

Example Study

 $=mc^2$

- Double V-Groove weld with bottleneck around 40% to 50% through circumference
- No TWC or rupture for 2,500 and 10,000 realizations
- Fitting distribution on depth and extrapolating gives probability of rupture in [10⁻⁶,10⁻⁴] range with most likely around 10⁻⁵

а	P(X > a)
0.5	1.28×10^{-4}
0.51	5.88×10^{-5}
0.52	2.73×10^{-5}
0.53	1.29×10^{-5}
0.54	6.14×10^{-6}
0.55	2.97×10^{-6}

Materials, Structural Integrity and Reliability Solutions Through Innovative Engineering

Example study : selection of importance sampling

Materials, Structural Integrity and Reliability Solutions Through Innovative Engineering

Results

 \widetilde{mc}^2

 Importance sampling on A parameter (high values) and WRS (low values) gives probability around 10⁻⁵

Bootstrapping of results indicates stability

Conclusion

- Extremely low probabilities require good understanding of the problem and a robust approach to estimate results with confidence using a reasonable sample size
- LHS and DPD have proven successful as a first step for the approach to identify the input drivers
- The use of Sensitivity Analysis helps in the selection of those drivers
- Importance sampling can then be applied with a greater chance of success