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Abstract: This paper specifies detection-controlled regression models to investigate the drivers of health, safety, 

and environmental (HSE) performance and reporting behavior. The analysis confirms some results from previous 

research and also tests new hypotheses, with emphasis on supervision-related practices and policies. Most of the 

results are general and thus applicable to other regions, to other operators, and very likely to other industrial 

sectors. The results can be used to drive decisions regarding operating practices and HSE management system 

policy. 
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1.  INTRODUCTION 
 

Health, safety, and environmental (HSE) managers are responsible for analyzing HSE performance and 

continuous improvement. Quantitative analysis poses special challenges because there is no theoretical basis for 

assumptions regarding the functional form of HSE incident phenomena, incident data is often unbalanced (few 

incidents), data is not collected (typically) in cases when there are no incidents, and incidents are not always 

reported. However, these challenges can be met with common-sense assumptions, improved data collection 

strategies, and advanced modeling methods.  

This work specifies detection-controlled regression models similar to those employed in previous research to 

investigate the drivers of HSE performance and reporting behavior in oil and gas drilling [16,17]. The analysis 

confirms some results from previous research and also tests new hypotheses, with emphasis on supervision-

related practices and policies. Most of the results presented here are general and thus applicable to other regions, 

to other operators, and very likely to other industrial sectors. The results can be used to drive policy decisions 

regarding operating practices and HSE management system policy by providing a basis to allocate resources to 

those policies with the largest benefit-cost ratios. 

 

1.1.  Imperfect Reporting of Safety Incidents 

 

As described in the literature, underreporting of incidents in the workplace occurs across many sectors 

[26,20,25,31,27,28]. There are various reasons for underreporting, some are intentional (evasion) while others are 

unintentional (ignorance). Also, underreporting can occur at any level (worker, supervisor, manager). The purpose 

of this study is to investigate incidence and underreporting behavior in oil and gas drilling. It is acknowledged that 

the prospect also exists for overreporting, for example, fraudulent reports of incidents that did not occur made as 

an attempt to obtain a financial gain from the employer or insurance provider, but in this study it is assumed that 

there is no overreporting.   

There is an emerging literature on the subject of incomplete detection based on the seminal work of Feinstein 

[10,11]. As Feinstein predicted, his model of detection controlled estimation (DCE) could be applied in various 

contexts. Studies have been completed in tax compliance, environmental compliance, health diagnosis, political 

science, and safety in oil and gas drilling [8,5,13,39,4,19,33,16,17]. The present study adds to the empirical 

foundation in oil and gas drilling by re-testing previous hypotheses with improved (more granular) independent 

variables, and by testing new hypotheses.  



 

1.2.  Implications of Imperfect Reporting 

 

Imperfect reporting distorts the observations of incident data. A simple example demonstrates the impacts of 

underreporting, assuming that no fraud occurs (modified from [17]). Consider 100 hypothetical safety outcomes 

in Table 1. The columns represent whether or not an incident occurred, while the rows represent whether or not 

the incident was reported. In this unobservable “truth” case, the underreporting is evident. In practice, however, 

the underreported incidents are counted with the actual non-incidents. Thus, the analyst observes the data as 

depicted in Table 2. 

 

Table 1. True Incident Data 

 

  Incident 

Occurred? 

  Yes No 

Incident 

Reported? 

Yes 10 -- 

No 4 86 

 

Table 2. Observed Incident Data 

 

  Incident 

Occurred? 

  Yes No 

Incident 

Reported? 

Yes 10 0 

No 0 90 

 

 Depending on the levels of imperfect reporting, the implications can be severe. The true frequency of an 

incident, P(I), is equal to 14/100, while the analyst computes a value of 10/100. Of course the conditional 

probabilities are also affected. The data in Table 1 provides the reporting rate, defined as the conditional 

probability, P(Report|Incident) = P(R|I). Here, this value equals 10/14, not 1 as indicated in Table 2. The 

complement of the reporting rate is the underreporting rate, P(No Report|Incident) = P(NR|I). It is clear that in 

the presence of imperfect reporting, use of the data in Table 2 will distort any qualitative or quantitative analysis. 

If the imperfect reporting can be modeled explicitly, then more accurate assessments can be made of the true 

incident phenomena. Also, the analyst will learn about factors that affect the reporting rate. 
 

 

2.  REGRESSION MODELS OF IMPERFECT REPORTING 
 

It is assumed that incidents are reported as the product of two independent and sequential events. First, an incident 

(or set of incidents) either occurs or does not occur. Second, an incident (or set of incidents) either is reported or 

not reported. This assumption facilitates the mathematical treatment and discussion. Two models are specified for 

this study.  

 

2.1.  Model of Perfect Reporting (No Underreporting, No Overreporting) 

 

This model is specified and estimated to establish a base case for comparison, and reflects conventional practice 

in regression analysis of HSE incidents [11,14,15,6,34,35,22,7,21,40,18]. That is, this model estimates the case as 

depicted in Table 2.  

Observations were collected from nine drilling rigs over a ~22 month period in 2011-2102 from one of Shell’s 

(operator’s) onshore development assets in the U.S. The unit of observation is defined as one well.  Data is 



collected for each well i on each rig r in the study period. There are       rigs and        wells on each 

rig,     is a     vector of independent variables for well    believed to affect incidence, and   is defined as a 

    vector of coefficients to be estimated. This model specifies the incidence function as Poisson where 

             . The  probability for observation     is represented as shown in Equation (1) with the resulting 

log-likelihood equation shown in Equation (2). Note that the marginal effect of a variable on the dependent 

variable,       , is equal to     . 
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2.2.  Model of Imperfect Reporting (Underreporting, No Overreporting) 

 

This model is specified and estimated to investigate the impacts of underreporting. One set of independent 

variables are specified for an incidence function, while another set of independent variables are specified for a 

reporting function. This model requires a key assumption regarding the reporting process. When more than one 

incident occurs, there are three potential outcomes for reporting. One outcome is that all of the incidents are 

reported, a second outcome is that none of the incidents are reported, and a third outcome is that there is partial 

under-reporting and a subset of incidents is reported. In the derivation below, it is assumed that for each 

observation of the dependent variable, incidents are either all reported or all not reported, simplifying the 

computations. 

 If one allows for the possibility of partial reporting, the implications are severe. The number of conditional 

reporting probabilities that need to be estimated grows significantly, even when reasonable simplifying 

assumptions are made. In addition, the number of terms on the right hand side of the regression is in theory, 

infinite. For example, to compute the probability of observing one reported incident, the analyst would have to 

consider all potential values of incidence. The analyst could constrain this number to limit the scope of the 

computation, but the selection of the cutoff point would be arbitrary. For these reasons, the case of partial under-

reporting is not specified here. 

The incidence function is specified again as Poisson, and the reporting function is specified as a binary probit 

model (see [17] for a description of the probit model).     is a     vector of independent variables for well    
believed to affect reporting, and   is defined as a     vector of coefficients to be estimated. The probability that 

observation     on the dependent variable takes on a value greater than zero is shown in Equation (3) with the 

resulting log-likelihood function for all non-zero observations, m, shown in Equation (4).  
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The probability that observation     on the dependent variable takes on a value equal to zero is the sum of the 

probability that no incident occurred plus the probability that an incident occurred but was not reported, and this is 

shown in Equation (5) with the resulting log-likelihood function for all zero observations, n-m, shown in Equation 

(6).  

 

                                                                              (5) 
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The log-likelihood for the sample is           and is maximized numerically. The asymptotic covariance 

matrix is estimated by evaluating the negative inverse of the Hessian at the maximum likelihood estimates. The 

identification conditions for this family of models are derived and explored in [10].  

 

2.3.  Dependent Variable 

 

Incident data was collected for several categories of incidents: loss of primary containment, fires, near misses, 

property loss and damage, unsafe acts and conditions, and injuries and illnesses. For each well ri, these events 

were summed to create the primary dependent variable, and the events were not weighted in any way. While 

analysis can be performed on these data individually, the authors’ experience suggests that it is more appropriate 

to view the collection of incidents (and potential incidents) as an overall index of HSE performance. A second 

reason for aggregating the data in this way is that unaggregated data is often too unbalanced to yield reliable 

statistical results, that is, the dependent variable does not exhibit sufficient variability (away from 0). Figure 1 

provides the distribution of the dependent variable.  

  

2.4.  Independent Variables and Hypotheses 

 

There are various taxonomies for organizing risk factors (see [1] for example). In this study, the independent 

variables are grouped into five categories. This structure is intended to help organize the analysis and discussion 

herein. For each variable, the hypothesis regarding the directional impact (sign) of the variable on incidence and 

reporting is stated, and whether or not the variable is expected to be statistically significant (at the 95% 

confidence level). Many of these expectations are based on results reported in [17], referred to in this section as 

“previous research.”   

 

2.4.1.  Work Type 

 

Variables in this category describe the attributes of the work being performed. 

 PadSwitch: This binary variable takes a value of 1 if the well drilled on a different pad than the rig’s 

previous well and 0 otherwise. This variable will test the hypothesis that the first well after rig-up 

increases the likelihood of incidents (e.g. shakedown issues). The expectation is that the sign of this 

variable will be positive and significant in the incidence function and insignificant in the reporting 

function.  

 Gap: This variable is defined as the count of days between the start of the well and the end of the previous 

well. This variable will test the hypothesis that longer gaps between drilling operations disrupt established 

practices and policies and thus increase the likelihood of incidents. The expectation is that the sign of this 

variable will be positive and significant in the incidence function and insignificant in the reporting 

function. It is also recognized that there will be some correlation between this variable and the PadSwitch 

variable.  

 WellType: This binary variable takes a value of 1 for development wells and 0 for all other wells. 

Previous research indicated that differences between well types in engineering design, operations, and site 

attributes increase the likelihood of incidents on development wells. The expectation is that the sign of 

this variable will be positive and significant in the incidence function and insignificant in the reporting 

function.  

 DrillingDays: This variable is defined as the count of days from the start of the well to the end of the well. 

It is intended to control for exposure time and thus the expectation is that the sign of this variable will be 

positive and significant in the incidence function and insignificant in the reporting function.  



Figure 1. Distribution of Dependent Variable 

 

 
 

 Non-ProductiveTime: This variable is defined as the percent of total days on the well spent on non-

productive activities (e.g. rig or other equipment breakdown, other unplanned events). This variable will 

test the hypothesis that such disruptions in normal drilling operations and switching between activities, 

often under increased time pressure, increase the likelihood of incidents. The expectation is that the sign 

of this variable will be positive and significant in the incidence function and insignificant in the reporting 

function.  

Because the rigs were all drilling similar types of wells using similar procedures, other variables such as well 

design and underbalanced or managed pressure drilling could not be tested. 

 

2.4.2.  Equipment and Work Site 

 

Variables in this category describe the rig and the location where the work is being performed. 

 Rig#: Binary variables are defined for each of the nine rigs in the data set. These variables model 

differences in performance not captured by other variables. The expectation is that these variables will be 

insignificant in the incidence and reporting functions once other variables are controlled for (e.g. 

supervision), consistent with previous research.  

 WeatherQuarter: Environmental conditions such as extreme heat or cold, or heavy rains or snows, may 

affect incidence. This variable is defined as a binary variable representing the calendar quarter in which 

the well was drilled. There are no expectations on the signs of these variables or their significance in the 

incident function. They are not expected to be significant in the reporting function. 

The rigs were all from the same drilling contractor and were outfitted in a similar way (i.e. similar levels of 

automation), and the drilling sites all shared the same geography and degree of site remoteness, thus none of these 

variables could be tested.  

 

2.4.3.  Supervision 

 

Variables in this category capture attributes of the onsite supervisor(s). The quality of supervision is an important 

factor in driving compliance with procedures [36]. How many are there? Is there well-to-well consistency? Are 

they owner employees or contractors? These types of questions have been investigated in several of the 

aforementioned studies. The results for these types of variables can be used to adjust policies on allocation of 

supervisory resources. 
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 Foreman-DaysForeman#: For each of the 59 foremen who worked within the study period, this variable is 

defined as the sum of days that the foreman worked on the well (“Foreman-Days”). These variables are 

intended to model the marginal impact of each supervisor on safety incidence. Based on previous studies, 

the expectation is that some supervisors will be positive (negative) and significant in the incident 

function, and possibly in the reporting function. An alternate version of this variable was defined as the 

sum of days worked on the well divided by the DrillingDays. The difference in results was negligible. 

 Foreman-DaysTeam#: Some foreman worked on many of the same wells as other foreman, and of 44 of 

these foremen “teams” were identified. For each of these teams, this variable is defined as the sum of 

Foreman-Days for each foreman divided by the DrillingDays. Recent research suggests that team 

characteristics and communication norms can affect safety outcomes [3,24]. As is the case with the 

individual foreman variables, it is possible that some teams will be positive (negative) and significant in 

the incident function, and possibly in the reporting function. 

 ForemanCount: This variable is defined as the number of different foremen who worked on the well. 

When more foremen are assigned to a well, it may lead to mixed messages and an increase in incidence, 

although previous research did not support this hypothesis. In contrast, it is also possible that having more 

different foremen work on a well, even if at different times, provides additional perspectives, sharing, and 

reinforcement of policies and best practices that decrease incidence. The expectation is that this variable 

will either be insignificant, or negative and significant, in the incidence function. The expectation is that 

for the same reasons this variable will be positive and significant in the reporting function, consistent with 

previous research. An interesting question is whether this supervisory diversity variable or the one 

described next that describes supervisory concentration will better explain incidence and reporting. 

Previous research did not test any hypotheses regarding concentration. 

 Foreman-DaysPerRig-Day: This variable is defined as the sum of individual Foreman-Days divided by 

DrillingDays. For example, if Foreman#1 worked 10 days and Foreman #2 worked 15 days on a 15 day 

well, then this variable would equal (10+15)/15. It is intended to measure the concentration of 

supervision. It is possible that a larger concentration of supervision leads to better oversight and a 

decrease in incidence. However, it is also possible that large concentration can lead to confusion 

regarding who is in charge, mixed messages, and an increase in incidence. The mixed messages 

hypothesis here is different than that described in the previous variable definition because in this case the 

variable measures whether the messages occur at the same time. Therefore, the expectation on this 

variable in the incidence and reporting function is uncertain.  

 ForemanConsistency: This variable is defined as the sum of individual Foreman-Days for those foremen 

who also worked on the previous well, divided by the sum of all Foremen-Days. Thus, a large value 

indicates that much of the supervision on the current well is the same as the previous well (more 

consistent). Previous research indicated that consistency increased the likelihood of incidents, supporting 

the hypothesis that the benefits of new perspectives and sharing of best practices across locations (rigs) 

outweighed the benefits of consistency. However, the variable as it is defined here is more refined and 

should produce a more reliable test of this hypothesis. Previous research used a simple binary variable to 

indicate whether the foremen were exactly the same as the previous well; for example, if only 3 out of 4 

foremen were carried over from previous well, it would have been classified as not consistent. There is no 

expectation on the sign of this variable in the incidence function. The expectation is that the variable will 

be insignificant in the reporting function.       

Three variables are defined to investigate the impact of foreman employment status. Previous research did not 

indicate any difference between operator and contractor foremen, but one hypothesis for this result was the fact 

that some of the contractor foreman were former operator employees and as such would reflect operator norms 

more so than a “pure” contractor. Foremen in each of these categories have different experiences and face 

different incentives, and the purpose is to test whether the degree of contractor supervision has an impact on 

safety incidence and/or reporting. This variable is tested in both the incidence and reporting functions, and there 

are no hypotheses regarding the sign of this variable. 



 ForemanPureOperator: This variable is defined as the sum of Foremen-Days worked on the well by 

foremen who are full-time operator employees.  

 ForemanPureOperatorOrFormerOperator: This variable is defined as the sum of Foremen-Days worked 

on the well by foremen who are full-time operator employees or a former full-time operator employees. 

 ForemanPureContractor: This variable is defined as the sum of Foremen-Days worked on the well by 

foremen who are contractors and who have never worked for the operator. 

While not a part of this study, future investigations could examine specific measures of supervisor training 

and competence, test for regional differences to put the spotlight on higher levels of management as suggested by 

others [12], and other supervisor policy options. 

 

2.4.4.  Safety Management System and Policy (SMS) 

 

The importance of safety management systems (SMS) is self-evident. All of the rigs in this study were governed 

by the same SMS (e.g. inspection protocols), thus there is limited opportunity to investigate elements of the SMS. 

The variables in this category represent some tactics and policies deployed by the operator. 

 Interventions: This variable counts the number of safety interventions made by workers and supervisors. 

For example, one worker may notice an unsafe act being committed by a fellow worker and intervene to 

stop the activity. Most companies have a mode for reporting such events, and unsafe conditions, as part of 

their SMS. It is commonly believed that these kinds of behaviors bolster the safety climate and improve 

safety performance [29], and previous research supported this hypothesis. However, it is also possible that 

large numbers of such interventions could be a sign of a poor safety climate. The expectation is that this 

variable (or percentage changes in lagged values) will be significant and negative in the incidence 

function. That is, larger values or percentage upticks are indicative of high levels of awareness and a good 

safety climate. This variable is expected to be insignificant in the reporting function. Variations of lagged 

specifications can also be considered as precursor candidates [32]. 

 WellCountOnRig: This variable is defined as the cumulative well count on each rig up to and including 

the current well. It is intended to capture the effect of experience on incidents and reporting. The 

expectation is that this variable will be negative and significant in the incidence function, and positive and 

significant in the reporting function. This reflects the expectation that as time passes, the operator’s SMS 

and culture becomes more well-established, and that this improves safety and reporting performance. 

Previous research was inconclusive on this point. It is an important hypothesis because if indicated to be 

true, it may affect procurement strategy when picking up and dropping rigs.  

In addition to the operator’s SMS, the drilling contractor’s SMS also affects safety performance and variables 

can be defined in a likewise fashion. As explained above, there was insufficient variability in the drilling 

contractor in the study period so this was not included. Future studies could include assessments of other safety 

policies like financial incentives for the drilling contractor [23]. 

 

2.4.5.  Worker Attributes 

 

Variables in this category provide information about the individual worker. This can be basic demographic 

information like age, experience in industry, and experience with the operator. The age and experience of workers 

are potential risk factors. One source reports that the majority of incidents involve workers with less than 5 years 

of experience, and that almost half of all incidents involve workers with less than 1 year on the job [2]. This 

category can also include measures of training and competence, and would speak to issues of training 

effectiveness [30,37]. Workers can also be described by levels of stress, fatigue, and workload [38]. While some 

of this data is collected on workers who suffer an injury, it is generally not collected for instances when no 

incidents occur (and this data is needed for a regression analysis). Because of this lack of data, and resource 

constraints which prevent its collection ex post, analysis of individual worker attributes was not included in this 

study.  

 



 

3.  REGRESSION ANALYSIS AND DISCUSSION 

 

The model of perfect reporting was estimated first to identify probable drivers of incidence and/or reporting. That 

is, when one observes a statistically significant variable in this model, it is not discernible whether the effect is 

attributable to incidence or reporting behavior. However, it is a sign that the variable is probably important in one 

or both of the functions and careful attention is warranted in the model of imperfect reporting. When a variable 

does not indicate as significant in the model of perfect reporting, one cannot ignore the variable in the model of 

imperfect reporting. That is, it is possible that the incidence and reporting behaviors “cancel out” and thus are not 

observed in the model of perfect reporting.  

Sample regressions for the Work Type variables are provided in Tables 3 and 4. These results are from the 

conventional Poisson model as specified in Equation (2); the detection-controlled models did not suggest any 

reporting-related effects. The results for the Work Type variables are as follows: 

 The PadSwitch (Table 3) and Gap (Table 4) variables are both significant in the incidence function and 

have the expected signs. This result suggests that the first well after rig-up on a different pad increases the 

likelihood of incidents. Longer gaps between drilling operations also increase the likelihood of incidents. 

Because of the correlation between these variables, their effects cannot be measured precisely when both 

are included in the same regression.  

 There is some evidence that indicates that the WellType variable is positive and significant in the 

incidence function, consistent with previous research. However, the effect was not consistently observed 

across the variety of specifications that were investigated, and in many cases it is statistically insignificant 

and excluded.  

 DrillingDays is consistently significant (or weakly significant) as expected and is retained as a control 

variable for exposure time. 

 Non-ProductiveTime is insignificant in the incidence function, contrary to expectations. 

Disruptions in normal drilling operations, switching between activities, and increased time pressure do 

not appear to increase the likelihood of incidents. 

 

Table 3. Work Type Variables (a) 

 

 
 

 

Table 4. Work Type Variables (b) 

 

 
 

Variable

Coefficient 

Estimate z-statistic

PadSwitch 0.6928 2.0500

WellType 1.0680 2.5200

DrillingDays 0.0430 2.4200

Non-ProductiveTime -2.4319 -1.0000

Constant -2.6603 -4.7000

Variable

Coefficient 

Estimate z-statistic

Gap 0.0371 1.7800

WellType 0.9025 2.2000

DrillingDays 0.0524 3.0400

Non-ProductiveTime -2.3264 -0.9500

Constant -2.7203 -4.7000



A sample regression for the Equipment and Work Site variables is provided in Table 5. The regression 

includes the significant Work Type variables and two Weather variables. This result is from the conventional 

Poisson model as specified in Equation (2); the detection-controlled model did not suggest any reporting-related 

effects. The results for the Equipment and Work Site variables are as follows: 

 None of the Rig# binary variables are significant in the incidence or reporting function after controlling 

for Foreman-Days. In regressions where Foreman-Days is excluded, some of the Rig# variables are 

individually significant, but the explanatory power of the models is small. When significant Foreman-

Days variables are included with the Rig# variables, the Rig# variables cease to be significant and the 

explanatory power of the models improves ~four-fold, suggesting that the true drivers of incidents and 

reporting are the foremen, not the rig. Based on this result, it was concluded that in regressions that 

contain Rig# and no Foreman-Days variables, that the Rig# variables are merely (weak) proxies for the 

Foreman-Days variables because of correlations between the two variables, i.e. some foremen worked 

repeatedly on the same rig. The same structure and result was observed in previous research.  

 There is some evidence that indicates that two of the WeatherQuarter variables are significant in the 

incidence function. More incidents appear to occur in the hot summer months, and fewer in the fall. While 

heat-related factors make sense in terms of their ability to affect HSE performance, we have no 

hypothesis for the apparent decrease of incidents in the fall. However, the effects was not consistently 

observed across the variety of specifications that were investigated, and in many cases they are both 

statistically insignificant and excluded.  

Comparing Tables 3, 4, and 5 is instructive because they demonstrate how coefficient estimates and 

significance tests change when alternate specifications are estimated. This is typical for all regression-based 

analysis, and it puts extra demands on the analyst to explain inconsistent and/or awkward results. In this case, the 

results are consistent across specifications. 

 

Table 5. Equipment and Work Site Variables  

 

 
 

The results for the Supervision and SMS variables are based on the detection-controlled model as specified in 

Equations (4) and (6) because the analysis suggests some reporting-related effects for these variables. In most 

cases the regressions include the previously identified significant Work Type and Equipment and Work Site 

variables, although the coefficients are not measured precisely in all regressions, especially for regressions with 

larger numbers of independent variables. In some cases this is explained by correlations between variables, 

otherwise, we attribute the fluctuations between specifications to the complexity of the incident- and report-

generating processes (e.g. excluded variables, joint effects, etc.), and to the numerical complexity of the detection-

controlled model (for example, in some specifications the model does not converge). The results for the 

Supervision variables are as follows: 

 Several of the individual foremen (Foreman-DaysForeman#) are significant in the incidence function, 

supporting the hypothesis that some foremen have a unique impact on safety performance. There is some 

evidence to support differential reporting behavior as shown in Table 6. In this example result, 

Foreman#12 appears to have more incidents relative to other foremen, and also appears to be less likely to 

report an incident once it occurs. But the results for individual foremen are somewhat sensitive to the 

specification, i.e. the choice and number of coefficients being estimated. Also, many foremen have small 

Variable

Coefficient 

Estimate z-statistic

Gap 0.0454 2.2000

WellType 1.1884 2.8300

DrillingDays 0.0688 3.6200

3Q (summer) 0.7101 2.4100

4Q (fall) -0.8378 -1.9800

Constant -3.5131 -5.3500



Foreman-Days totals, making it difficult to estimate their individual impacts with precision. Interpreted in 

their totality, the results do not suggest significant differential reporting behavior between foremen. Both 

results are consistent with previous research. 

 

Table 6. Foremen Variables 

 

 
 

 The foreman team variables (Foreman-DaysTeam#) were defined to test hypotheses about team impacts 

on safety performance. In some cases, the foreman variables and the team variables are correlated, and 

additional analysis was required to understand the structure of the relationship. Based on this analysis, it 

is clear that significant foreman teams (in incidence and/or reporting) are driven by the significance of 

their constituents; i.e. all but one significant teams have at least one individually significant constituent. In 

the one case where a significant team was comprised of two individually insignificant constituents, there 

is an apparent synergy between the two foremen that improved their joint performance. In summary, there 

does not appear to be a strong team impact on incidence or reporting, rather, it is the individuals who 

drive these outcomes. These variables were retained and used in cases where individual foremen variables 

were highly correlated. 

 The evidence for the ForemanCount variable indicates that when more foremen work on a well there is a 

decrease in the likelihood of incidents and an increase in reporting, consistent with expectations. This 

result indicates that when additional foremen work on a well, the diversity of supervision serves to 

reinforce policies and best practices rather than to introduce uncertainty from mixed messages.  

 The Foreman-DaysPerRig-Day variable was insignificant in the incidence and reporting functions. This 

result indicates that larger supervisory concentration does not yield a measurable impact, positive or 

negative, on incidence or reporting. It is important to note however that this variable is somewhat tightly 

clustered around a value of 2, potentially affecting the precision of the estimate. Also, when the value 

falls below this value it is not by much, therefore no conclusions can be drawn about the impact of 

concentrations less than 2.  

 As described above, previous research indicated that foreman consistency increased the likelihood of 

incidents. This was a somewhat controversial result and it was desired to revisit this question in the 

present study. The previous research used a simple binary variable to indicate whether the foremen were 

exactly the same as the previous well. The ForemanConsistency variable defined above is more refined 

and provides a more definitive test of this hypothesis. The results using the new variable definition 

indicate that consistency is significant in the incidence function, and that more well-to-well consistency 

decreases the likelihood of incidents. There is no impact on reporting.  

Variable

Coefficient 

Estimate z-statistic

Gap 0.0247 0.9500

WellType 0.8643 1.9100

DrillingDays 0.0673 3.1800

3Q (summer) 0.4326 1.3300

4Q (fall) -0.8528 -1.9100

Foreman#12 0.3268 4.8000

Foreman#43 0.0601 1.9200

Constant -3.1622 -4.4600

Foreman#12 -0.3777 -2.5400

Foreman#35 -0.1488 -0.9400

Constant 1.8768 2.2300

Incidence Function

Reporting Function



 The analysis of the three variables that describe foreman employment status indicate that employment 

status does not significantly affect incidence or reporting. This result was consistent whether individual 

foreman variables were included or not included in the regressions, reducing the risk that correlations 

between the two sets of variables was affecting the result. 

 The Interventions variable is significant and positive in the incidence function, contrary to expectations. 

This result suggests that higher levels of intervention can be interpreted here as an indicator of a 

breakdown in the safety climate. By itself, this information is not very useful because each rig develops 

different norms regarding the level of reporting. Percentage changes in Interventions was also 

investigated but were not found to be significant. The Interventions variable is not significant in the 

reporting function.  

 The WellCountOnRig variable was defined to test the hypothesis that as additional wells are drilled, the 

operator’s SMS and culture becomes more well-established, and that this improves safety and reporting 

performance. The variable is significant and negative in the incidence function, consistent with 

expectations. There is weak evidence that the variable is positive and significant in the reporting function.  

An auxiliary regression was specified to investigate the relationship between Interventions and the 

WellCountOnRig variable. A strong negative relationship was discovered; Interventions decrease the longer a rig 

is in the fleet. A typical comprehensive regression is shown in Table 7.  

 

Table 7. Comprehensive Regression (example) 

 

 
 

Table 8 contains a summary of the expectations and findings for each independent variable. The first column lists 

the variable name, the second column summarizes the expectations, and the third column summarizes the 

findings. 

 

  

Variable

Coefficient 

Estimate z-statistic

Gap 0.0554 1.9900

DrillingDays 0.0397 1.4700

Foreman#6 0.1016 1.8800

Foreman#35 0.2761 2.1700

Foreman#43 0.1461 2.7100

Foreman#45 0.1432 2.9000

Foreman#55 0.1940 3.2000

Foreman#56 -0.0610 -1.2500

ForemanTeam7/16 -2.8114 -1.4500

ForemanCount -0.4660 -2.1500

ForemanConsistency -1.4864 -1.7800

WellCountOnRig -0.1037 -2.8600

Constant 1.2499 1.1000

ForemanCount 2.9462 2.0000

Foreman#12 0.7016 0.8800

Foreman#35 -0.3663 -1.3800

WellCountOnRig 0.2174 1.2200

Constant -10.9078 -1.9900

Incidence Function

Reporting Function



Table 8. Summary of Individual Variable Expectations and Results 

 

Variable 
Incidence Function 

EXPECTATION 

Incidence Function 

RESULT 

 

PadSwitch + +  

Gap + +  

WellType (dev=1) + + (weak)  

DrillingDays + +  

Non-ProductiveTime + insignificant  

Rig# insignificant insignificant  

WeatherQuarter ? mixed (weak)  

Foreman-DaysForeman# mixed mixed  

Foreman-DaysTeam# mixed insignificant  

ForemanCount insignificant or -  -  

Foreman-DaysPerRig-Day ? insignificant  

ForemanConsistency ? -  

ForemanPureOperator ? insignificant  

ForemanPureOperatorOrFormerOper

ator 
? insignificant 

 

ForemanPureContractor ? insignificant  

Interventions - +  

WellCountOnRig - -  

Variable 
Reporting Function  

EXPECTATION 

Reporting Function 

RESULT 

 

PadSwitch Insignificant insignificant  

Gap insignificant insignificant  

WellType insignificant insignificant  

DrillingDays insignificant insignificant  

Non-ProductiveTime insignificant insignificant  

Rig# insignificant insignificant  

Weather insignificant insignificant  

Foreman-DaysForeman# mixed mixed (weak)  

Foreman-DaysTeam# mixed insignificant  

ForemanCount + +  

Foreman-DaysPerRig-Day ? insignificant  

ForemanConsistency insignificant insignificant  

ForemanPureOperator ? insignificant  

ForemanPureOperatorOrFormerOper

ator 
? insignificant 

 

ForemanPureContractor ? insignificant  

Interventions Insignificant insignificant  

WellCountOnRig + + (weak)  

 

  



As reported in Table 8, there are only a few variables that affect reporting. Using the regression model reported in 

Table 7, it is possible to compute the probability of a false negative for each zero observation, P(Incident|No 

Report), or P(I|NR), using the notation from the Introduction. The result provides a general indication of whether 

imperfect reporting is a significant problem. The probability is defined in Equation (7) using the notation from the 

Introduction 

 

        
           

     
 

                         

                                    
 

 

   
          

                           
 

(7) 

 

The average probability for all zero observations is 7%, suggesting that imperfect reporting is not a significant 

problem in this asset. This result suggests that future analysis probably can be completed without the more 

complex detection-controlled models without introducing significant bias. However, for definitive results, the 

detection-controlled estimates are always recommended.  

 

 

4.  CONCLUSION AND RECOMMENDATIONS 

 

The results of this analysis are largely consistent with previous research, strengthening the case for action on 

specific points [17]. Some of the results are specific to the operator or the asset, but most are general and thus 

applicable to other regions, to other operators, and very likely to other industrial sectors. Based on these results, 

the following actions are recommended for all drilling operations: 

 Refresh the focus on safety after all rig moves between drilling pads and extended delays between wells 

by organizing a formal HSE engagement event at the rig site before the next well starts.   

 Identify specific differences in exploration and development wells that have the potential to cause 

differences in incident rates, and engage the engineering and operations staff to mitigate these risks. 

 Institute a refresher course for all foremen and the workforce prior to the summer season to emphasize 

heat-related hazards. 

 Engage/interview foremen who were identified as more or less likely to have incidents to ascertain the 

potential drivers of these performance differences. 

 Assign additional foremen to each well to provide additional perspectives, sharing, and reinforcement of 

policies and best practices. Currently, about four foremen work on any one well. Increasing the number of 

different foremen who work on a well can be accomplished by splitting hitches between wells, or by 

having more foremen on location at the same time. 

 Maintain some supervisory consistency on each rig by assigning one or more of the foremen on the 

previous well to the current well. In cases where this is not possible, organize a formal HSE engagement 

event at the rig site before the next well starts. 

 Continue the current contractor HSE on-boarding process which appears to be successful in ensuring 

equivalent incident and reporting performance with the operator’s full-time staff. 

 Retain rigs for longer terms to firmly establish the SMS and reporting norms, i.e. a “first in, last out” 

model.  

A final note of caution is needed regarding the use of this kind of information. First, when a relationship 

between incidents and a variable is identified and an intervention plan or policy is enacted to reduce risk, then 

over time the relationship between incidents and the variable will degrade and ultimately be eliminated if the 

intervention plan or policy is effective. For example, if it is recognized that switching pads increases the 

likelihood of incidents, and a new policy is effectively implemented to refresh the safety focus in such cases, then 

switching pads will not be identified as a risk if the analysis is repeated in the future. But this should not be 

interpreted as evidence that switching pads no longer increases the likelihood of incidents, rather it should be 



interpreted as evidence that the intervention policy is working. Also, this same phenomenon makes it difficult to 

identify risk factors that are already being mitigated by some policy. In this case, the lack of statistical evidence 

would not be a sufficient reason to alter or cancel an existing mitigation policy that is otherwise believed to be 

working. 
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