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Abstract: Importance Measures (IMs) are used to rank the risk contributing factors in Probabilistic 

Risk Assessment (PRA). In this paper, existing IM methodologies are analyzed in order to select the 
most suitable IM for an Integrated PRA (IPRA) of Nuclear Power Plants. In IPRA, the classical PRA 

of the plant is used, but specific areas of concern (e.g., fire, GSI-191, organizational factors, and 

seismic) are modeled in a simulation-based module (separate from PRA) and the module is then linked 
to the classical PRA of the plant. The IPRA, with respect to modeling techniques, bridges the classical 

PRA and simulation-based/dynamic PRA. This paper compares the local and Global Importance 

Measure (GIM) methodologies and explains the importance of GIM for IPRA. It also demonstrates the 
application of GIM methodologies to  illustrative examples and, after comparing the results, selects the 

CDF-based sensitivity indicator (Si
 (CDF)) as an appropriate moment-independent GIM for IPRA. The 

results demonstrate that, because of the complexity and nonlinearity of IPRA frameworks, Si
 (CDF)

 is 

the best method to accurately rank the risk contributors. Si
 (CDF) can capture three key features: (1) 

distribution of input parameters, (2) interactions among input parameters, and (3) distribution of the 

model output. 

 
Keywords: Importance Measure, Integrated Probabilistic Risk Assessment (IPRA), Global 
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1.  BACKGROUND 

 
Classical IMs are developed to provide insight into the relative ranking of risk contributing factors 

(e.g., components, input parameters) in PRA [1]. This paper focuses on the comparative studies of IM 

methods and the selection of an IM approach for an Integrated Probabilistic Risk Assessment (IPRA) 

framework. Our ultimate goal in using an IM method is to find the most critical factors of NPP risk 

and rank the factors based on the degree of their contribution to the system risk (i.e., Core Damage 

Frequency). This would guide us to dedicate more resources and time to assess the accuracy and 

validity of the values (and associated uncertainties) of the most critical factors in the risk models and, 

ultimately, reduce the system risk. 

 
Several of the authors of this paper proposed an IPRA framework for diverse applications such as: (1) 
incorporation of the effects of organizational factors into PRA [2,3], (2) risk-informed resolution of 

Generic Safety Issue 191 (GSI-191) [4], (3) advancement of fire PRA analysis [5,6], and (4) 

improvement of seismic PRA [7]. The IPRA, with respect to modeling techniques, bridges classical 
and simulation-based/dynamic PRA. The static nature of classical PRA was the main impetus for 

having created a dynamic PRA. Although a simulation-based/dynamic PRA is the ideal goal for 

nuclear power risk analysis, it is, on a short-term basis, impractical and quite costly. Currently, NPPs 

utilize classical PRAs and to change them to fully simulation-based PRAs would require significant 

time and resources. In the IPRA framework, the classical PRA of the plant would be used, but specific 

areas of concern (e.g., organizational factors, fire, GSI-191, and seismic) would be modeled in a 

simulation-based module (separate from PRA) and the module would then be linked to the classical 
plant-specific PRA model. 
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Figure 1: Schematic representation of Integrated Probabilistic Risk Assessment (IPRA). 

 

 
 

 

The major features of an IPRA framework (Figure 1) are: (1) Classical plant-specific PRA and a (2) 

Simulation module that includes simulation and uncertainty quantification of realistic physical or 

social phenomena affecting certain basic events of plant-specific PRA. An IPRA approach would 

provide the possibility of (a) advancing quantification of dynamic interactions, (b) depicting a more 
adequate representation of contextual factors (e.g., physical factors and human performance), and (c) 

advancing propagation of uncertainties in the physical or social phenomena leading to specific basic 

events in PRA. These three improvements would lead to more “realistic” modeling of underlying 
failure mechanisms of specific basic events of classical PRA. Such modeling improvements, when 

used in IPRA applications, could be used to help improve safety and efficiency in NPP design and 

operation. Another advantage of IPRA is that it is a step toward having a fully simulation-based PRA. 
If and when NPPs are ready to switch to simulation-based PRAs, the simulation modules of an IPRA 

approach would be appropriate engines for them. 

 

The IM methodology has not yet been applied to IPRA. This is due to the intrinsic difficulties in 

applying the traditional IM methodologies such as Fussell-Vesely (FV) Importance Measure and Risk 

Achievement Worth (RAW) [1] to IPRA. Since the conventional IM methodologies are designed for 

ranking the basic events, their application to IPRA which includes explicit variables (e.g., physical 

parameters such as temperature and pressure), in Module 2 of Figure 1, is not well defined. Moreover, 

there is a concern over the potential bias caused by traditional IM methodology when it is applied to 

IPRA. The input variables of IPRA are given in various units and wide ranges, unlike basic event 
probabilities in classical PRA that are dimensionless and defined between 0 and 1. Thus, the 

traditional IM methodology, which evaluates the importance of risk factors based on the change of risk 

metrics, can result in the biased ranking of risk factors. Another deficiency of conventional IM 

methodologies is that they evaluate the ranking of risk factors (e.g., input parameters, failure 

probability of basic events) “locally”, i.e., based on the derivative of risk metrics with respect to one 

risk factor in the proximity of its nominal value.  More detailed discussion on local and global 

importance measure methodologies follows in Section 2.   
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Section 2.1 compares the local and Global IM (GIM) methodologies and explains the need for GIM 
for IPRA. Section 2.2 demonstrates GIMs and selects one, the CDF-based sensitivity indicator (Si

 (CDF)) 

[8], as an appropriate IM methodology for IPRA. In Section 3, the one-way Sensitivity Analysis (SA) 

method and Si
 (CDF) 

are applied to two example models to compare the results of these two different 
methodologies. In addition, based on a comparison of these methodologies, the appropriateness of Si

 

(CDF)
 for IPRA is discussed. Finally, the conclusion and the future plans for this research are presented 

in Section 4. 

 

2.  SELECTION OF IMPORTANCE MEASURE METHODOLOGY FOR IPRA 

 
2.1. Local vs. Global Importance Measures 

 

Importance measures (IMs) are commonly used to rank structures, systems and components with 
respect to their risk significance. Several IM methods have been developed for this purpose. These 

methods can be categorized into two groups; local IMs and Global IMs (GIMs). The local IMs are 

basically defined by an approximation to the partial derivative of the model output with respect to a 

specific input parameter in the proximity of its nominal value [9]. Examples of local IMs include 

Fussell-Vesely (FV) [1], Risk Achievement Worth (RAW) [1] and Differential Importance Measure 

(DIM) [8]. These IMs evaluate the influence of the deviation of an input parameter on the model 

output (usually risk metrics in PRA) when one input parameter is perturbed from its nominal value, 

while the other input parameters remain fixed at their nominal values.  

 
In reality, risk metrics are formulated as a function of input parameters, and these input parameters are 

mostly uncertain and expressed by probability distributions. Local IMs cannot reflect the entire 

distribution of input parameters, because their scope is inherently limited to the output variation 
around the nominal output, calculated by fixing all but one input parameter to their nominal values 

[10]. Moreover, local IMs are not capable of taking into account the non-linearity of the risk model or 

the interaction among input parameters [11]. This is because the concept of a partial derivative of a 
model output, with respect to one of the input parameters around its nominal value, can be valid as an 

IM only if the risk model is linear and there are no significant interactions among input parameters.  

 

As it appears in existing literature, Global Sensitivity Analysis (GSA) has been extensively studied in 

order to discover the sensitivity level of input parameters on the output measure. GSA also helps 

uncover the model errors, rank the importance of input parameters according to their effect on the 

output measure specifically to simplify the complex models, and identify the critical regions of the 

input vector space [12]. Another important aspect of GSA is the consideration of the interaction of 

input parameters on the result of the output measure. Designs of experiments, metamodels, and 
regression analysis techniques have been developed for this purpose [12]. For instance, R.J. Tebbens 

et al. [13] performed SA on their model of post-eradication polio risk using the regression analysis 

technique. In their work, the regression model was developed by randomly sampling the input 
parameters from their continuous distribution. Then, the sensitivity of each input parameter was 

evaluated based on Spearman’s rank correlation, which indicates the extent of monotonic relationships 

between model output and input parameters. 

 

Recently, GIM methods have been proposed to account for the entire distribution of the input 

parameters and the model output in risk models in order to evaluate the effect of an input parameter 

with respect to the model uncertainty [14]. The GIMs evaluate the change of model output when all 
input parameters are randomly sampled from their distribution [10]. Thus, they are able to take into 

account the entire distribution of all input parameters and their contribution to the uncertainty of 

model output. In addition, they are capable of taking into account the non-linearity of the model and 
interactions among input parameters by simultaneously considering the entire distribution of all input 

parameters [10]. There are two types of GIMs that have been proposed and applied recently: variance-

based and moment-independent [8,10]. Variance-based GIMs are simply a modified version of local 

IMs in order to account for the entire input parameter distribution instead of only the point value [8]. 

On the other hand, moment-independent IMs consider the probability density function (PDF) or the 
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cumulative distribution function (CDF) of the model output to estimate the uncertainty importance of 
model input parameters.  

 

Various authors indicate that local IMs and GIMs may produce different rankings of the input 
parameters since they evaluate different indices [9,11,13]. For example, E. Borgonovo [14] mentions 

that local IMs quantify their contribution of input parameters to total risk, while GIMs compute their 

contribution to the total uncertainty of output. There is, however, a situation where GIMs should be 

utilized instead of local IMs. If the input parameters are given by their distributions, the GIMs must be 

performed [14] because the risk model becomes non-linear with the uncertainty of input parameters 

even if the original expression is linear [11]. This can be seen when considering the simple example of 
a one-out-of-two parallel system. If the two components are assumed to be independent, the 

unavailability of the system Q is written as 

      (1) 

where q1 and q2 are the unavailability of components 1 and 2, respectively. Equation (1) is linear with 
respect to each input parameter. Now, we assume both q1 and q2 have uncertainty. Then Q becomes a 

function of random variables. The variance of Q is 

.   (2) 

 

As seen in equation (2), when uncertainties of input parameters are taken into account, the risk model 
involves non-linearity.  

 

Because the simulation module in IPRA (Module #2 in Figure 1) has input parameters with 
distributions and, the output is a complex function of input parameters with non-linearity and 

interactions among them, the GIM methodology is selected for IPRA. Section 2.2 compares different 

global approaches and selects one for IPRA.  

 

2.2. Selection of GIM Methodology for IPRA 

 
The GIM methodologies are divided into two categories: variance-based methods [15] and moment-

independent methods [8,14]. Both techniques are global and are able to capture the entire distribution 

of input parameters and interactions among them. However, it has been explained that a variance-
based importance measure is insufficient for the purpose of quantifying which input parameters most 

influence the decision-maker’s state of knowledge [8,14,16]. Borgonovo [16] reports that the ranking 

of input parameters obtained by a variance-based method differs from the one produced by a moment-
independent method, especially for the most influential input parameters. In addition, Borgonovo [14] 

mentions that, when the analyst wants to rank the input parameters based on their impact on the 

uncertainty of the model output, a sensitivity indicator should refer to the output distribution instead of 

to its moment, such as variance. Thus, the moment-independent GIM method, which is calculated by 

referring to output distribution, is selected as an importance measure for our IPRA framework. 

 

In this paper, a moment-independent GIM, called a CDF-based sensitivity indicator Si
 (CDF)

 [8], has 
been selected for IPRA. This indicator ranks the input parameters based on their influence on the 

cumulative density function (CDF) of model output calculated by randomly sampling the input 

parameters. This method is capable of capturing all three key required elements of IM for risk models 
including (i) distribution of input parameters, (ii) interaction among input parameters in the risk model, 

and (iii) distribution of the model output. 

 

Si
 (CDF) assumes the model output Y as a function of input parameters X = {X1, X2, …, Xm} expressed by 

 

     (3) 

 

To begin, input parameters are randomly sampled from their distributions, and with each set of input 

parameters, the model output Y is calculated. As a result, the unconditional CDF of model output FY 
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(y) can be quantified. Here, the term “unconditional” means that the CDF of model output is calculated 
by randomly sampling all input parameters from their distributions.  

 

Then, the conditional CDF of model output is calculated using the ‘two-loop’ Monte Carlo (MC) 
sampling method [8]. First, one of the input parameters Xi is randomly sampled from its distribution 

(denoted as xi
*
), which is the first loop of MC sampling. Then, the conditional model output is 

calculated by fixing the input parameter Xi at xi
*
, while the other input parameters are randomly 

sampled from their distributions (the second loop of MC sampling). Based on the conditional outputs, 

the conditional CDF of model output FY|Xi (y), given that the input parameter Xi is specified at a certain 

value, is produced. The difference between FY (y) and FY|Xi (y) is measured by the area A (Xi) closed by 
FY (y) and FY|Xi (y) curves. We can obtain A (Xi) by integrating the absolute difference between FY (y) 

and FY|Xi (y) along the axis of model output Y. 

 

.    (4) 

 

These steps are repeated with random samples of xi
*
. Based on the output from replicated calculation 

of A (Xi), the expected difference of FY|Xi (y) from FY (y) is calculated by 

 

,    (5) 

 
where fxi (xi) is the marginal density distribution of input parameter Xi.  

 

Q. Liu et al. [8] define the CDF-based sensitivity indicator Si
 (CDF)

 as 

,     (6) 

where E (Y) is the unconditional expected value of model output Y. 

 

 

3. COMPARISION OF GLOBAL METHODS FOR IPRA USING ILLUSTRATIVE 

EXAMPLES 

 
The IM methodology has not yet been applied to IPRA.  This is due to the intrinsic difficulties in 

applying the traditional/local IM methodologies such as Fussell-Vesely (FV) and Risk Achievement 

Worth (RAW) [1] to IPRA. Morton et al. [17] proposed a one-way SA procedure for IPRA as an 
alternative to traditional/local IM methodologies, and presented the preliminary results of its 

application to the risk-informed resolution of GSI-191. One-way SA is global as it partially considers 

the distribution of input parameters; however, it does not consider the interactions among the input 

parameters. For the one-way SA, the nominal values and ranges of input parameters were first 

determined based on expert opinion. The ranges of parameters were given by appropriate distributions. 

Then, the one-way SA was performed using a tornado diagram in order to rank the input parameters 

according to their contributions to the model output.  

 

While the one-way SA has made significant clarifications and advancement on ranking of parameters 
in IPRA, additional research is needed to resolve its limitations when it is applied to a complex model 

like IPRA. The limitations include: (1) the one-way SA is not comprehensive with respect to 

consideration of the distribution of input parameters. Since the one-way SA is conducted by varying 

the input parameters only within the predetermined ranges (i.e., between lower and upper ranges), it is 

not capable of capturing the entire distribution of input parameters. This limitation becomes important 

when the input parameters are given by a non-uniform distribution (e.g., log-normal) in which both the 

probability density and continuous tails need to be accounted for, (2) during the analysis for a certain 

input parameter, since only that input parameter is varied, and the other input parameters remain fixed 

at their predetermined nominal values, the one-way SA is not capable of capturing interactions among 
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input parameters, and (3) because the sensitivity is evaluated by relying solely on the maximum 

deviation of the model output from the nominal output, the one-way SA is not able to account for the 

entire distribution of the model output (e.g., shape of model output distribution). 
 

Morton et al. [17] also suggest the metamodel (or response surface model) approach to advance the 

SA. This method can account for cross-term effects of several input parameters that are not considered 

in the one-way SA approach.  Nevertheless, some of the limitations mentioned above would still exist. 

Limitation #2 would be partially solved since the metamodel approach tries to derive the regression 

equation by fitting the model output within the whole range of input parameters. However, as this 

approach presumes the form of a regression model, we need to be aware of its effects on the results 
when selecting a specific type of regression model. Besides, limitation #1 would remain if the ranges 

of input parameters are predetermined by lower and upper bounds, instead of by sampling input 

parameters from their distribution. 
 

Therefore, in this paper, the CDF-based sensitivity indicator (Si
 (CDF)

) is suggested as an appropriate 

moment-independent GIM for IPRA since it can capture all three dimensions that have been identified 
as the key elements of IM: (1) entire distribution of input parameters, (2) interaction among 

independent input parameters, and (3) entire distribution of model output. In the following sections, 

the one-way SA using the tornado diagram [17] and the CDF-based sensitivity indicator Si 
(CDF)

 [8] are 

applied to three illustrative models; (1) a hypothetical system model composed of four components, , 

(2) a non-linear mathematical model, and (3) a fault tree without common cause failures and (4) a fault 

tree with common cause failures. Then, the ranking obtained by each method is compared to illustrate 

the differences between the one-way SA and GIM methods.  

 

3.1. A Hypothetical System with Four Components 

 
The hypothetical system model analyzed in this section is shown in Figure 2. In this system, the 

components 1 and 2 are in series, while components 3 and 4 are in parallel. The system fails if either 

component 1 or 2 fails, or if both components 3 and 4 fail. Each component is assumed to have 

independent random failure times T1, T2, T3, and T4. It is also assumed that the failed component is not 

repaired. The Boolean expression of this system is given by 

     (7) 

The failure time of the system T is evaluated by: 

 

     (8) 

 

 
Figure 2: An example of a system with four components. 

 
 

 

 

4321 XXXXT ⋅++=
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Table 1: Lower and upper bounds of uniform distribution for failure rate. 

(Days) Lower bound Upper bound 

 
150 250 

 
150 250 

 
25 75 

 
25 75 

 

In this example, the expected system failure time E (T) is selected as a target model output, where 
sensitivity to input parameters is analyzed using a one-way SA (tornado diagram) and GIM (Si 

(CDF)). 

On the other hand, the input parameters are four independent random variables T1, T2, T3, and T4. 

These four input parameters are assumed to obey exponential distribution with a constant failure rate 
of λ1, λ 2, λ 3, and λ4, respectively. The failure rate for each component has an epistemic uncertainty 

given by a uniform distribution. The lower and upper bounds of uniform distribution are listed in 

Table 1. 

 

3.1.1. Computational Methods 

 

We followed the method proposed by Clemen et al. [18] for computation of the one-way SA using the 

tornado diagram. Morton et al. [17] has also used the same method in the SA on an IPRA for the risk-

informed resolution of GSI-191. In order to conduct the one-way SA, the nominal values and ranges of 
input parameters must be identified. The nominal value of each input parameter was set to the mean 

value of the uniform distribution shown in Table 1. In other words, the nominal value was set to λ 1
-1 = 

λ 2
-1

 = 200 [Days] and λ 3
-1

 = λ 4
-1

 = 50 [Days]. On the other hand, the minimum and maximum ranges 
of each input parameter were set to the lower and upper bounds of uniform distribution.  

 

A tornado diagram (Figure 3) was computed to enable us to compare the relative impact of each input 
parameter. First, the output E (T) was calculated with one of the input parameters being gradually 

increased from its minimum to its maximum range, while the other input parameters were fixed at 

their nominal values. The number of random samplings from the exponential failure curve was set to 

3,000. Next, the minimum and maximum values of those outputs were plotted in a horizontal bar chart. 

In the graph (Figure 3), the nominal output, which means the model output computed by fixing all 

input parameters at their nominal values, is set as the zero point of the x-axis. The length of each bar 

illustrates the change of the model output when one of the input parameters is swept from its lower to 
upper bound. From a tornado diagram, it can be determined which input parameter has the largest 

impact on the model output. 

 

The Si
 (CDF) for a hypothetical system model was computed using the MC simulation-based method 

proposed by Liu et al. [8]. The unconditional model output Y (in this case, E (T)) was calculated by 

randomly sampling all input parameters from their distribution with a sampling size of n = 10,000. 

Based on the output, the approximate unconditional CDF of the model output FY (y) was calculated by 

the empirical distribution function SY 
n 
(y). 

 

     (9) 

    (10) 

 

where j denotes the sample index. In other words, the model output yj was calculated with the 

randomly sampled set of input parameters {x1
(j)

, x2
(j)

,…, xn
(j)

} (j = 1, 2, … ,n). Following the method 
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explained in Section 2.2, the conditional CDF of model output (FY|Xi (y)) was generated based on 

equations (9) and (10), as well. Finally, Si
 (CDF) of each input parameter was calculated using equations 

(4) to (6).   

 
3.1.2. Comparison of the Results 

 

Figure 3 shows the tornado diagram for input parameters of the system model in Figure 2. In this 
graph, the red and blue bars illustrate the change of model output Y when one input parameter is 

increased or decreased, respectively. In tornado diagrams, the sensitivity of the model output to its 

input parameters is measured by the length of bars; the longer the bar, the larger the sensitivity of the 

model. 

 

Table 2 shows the ranking of input parameters based on Si
 (CDF)

. In this table, input parameters were 

ranked based on the mean value of Si
 (CDF)

. In addition to the mean value of Si
 (CDF)

, Table 2 shows 95% 
CIs of Si (CDF) for each input parameter. When we rank the input parameters, based on some indices 

calculated using a sampling methodology, it is important to take into account the CIs that are 

accompanied with mean values of indices. If the CIs do not overlap each other, then the ranking is 

statistically significant. Thus, we calculated and presented 95% CIs of Si (CDF) in Table 2, even though 

the original methods for calculating Si
 (CDF)

 proposed by Liu et al.  did not include CIs.  According to 

Table 2, Si
 (CDF)

 produced the same ranking as a tornado diagram (λ 3-1 = λ 4-1 > λ 1-1 = λ 2-1). Again, it 

should be noted that CIs are overlapped between λ 3-1 and λ 4-1, and between λ 1-1 and λ 2-1. 

 

Figure 3 shows that the output E (T) is more sensitive to input parameters λ 3
-1

 and λ 4
-1

 compared with 
λ1

-1 and λ 2
-1. Since 95 % confidence intervals (CIs) are overlapped between λ 3

-1 and λ 4
-1, there is not 

enough evidence to conclude the difference in the influence on the output.  The same argument arises 

for input parameters λ 1
-1

 and λ 2
-1

. Therefore, using the tornado diagram methodology, ranking of the 
input parameters based on their impacts on the model output was calculated as λ 3

-1 = λ 4
-1 > λ 1

-1 = λ 2
-1. 

 

Table 2 shows the ranking of input parameters based on Si
 (CDF)

. In this table, input parameters were 

ranked based on the mean value of Si
 (CDF)

. In addition to the mean value of Si
 (CDF)

, Table 2 shows 95% 

CIs of Si
 (CDF) for each input parameter. When we rank the input parameters, based on some indices 

calculated using a sampling methodology, it is important to take into account the CIs that are 

accompanied with mean values of indices. If the CIs do not overlap each other, then the ranking is 
statistically significant. Thus, we calculated and presented 95% CIs of Si

 (CDF) in Table 2, even though 

the original methods for calculating Si
 (CDF)

 proposed by Liu et al. [8] did not include CIs.  According 

to Table 2, Si
 (CDF)

 produced the same ranking as a tornado diagram (λ 3
-1

 = λ 4
-1

 > λ 1
-1

 = λ 2
-1

). Again, it 
should be noted that CIs are overlapped between λ 3

-1 and λ 4
-1, and between λ 1

-1 and λ 2
-1. 

 

Figure 3: Tornado diagram for hypothetical system model 
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Table 2: Ranking of input parameters in the hypothetical system model based on Si

 (CDF)
 

Ranking 
Input  

Parameter 

Mean Value  

Si

 (CDF)
 

95 % CI  

Lower Limit 

95 % CI  

Upper Limit 

1 λ3
-1 0.081 0.045 0.118 

1 λ4
-1 0.080 0.044 0.117 

2 λ2
-1 0.026 0.013 0.039 

2 λ1
-1

 0.026 0.012 0.039 

 

 
3.2. A Non-linear Mathematical Model: Ishigami Function 

 

The Ishigami function is a nonlinear and non-monotonic function, which is commonly used to check 

the performance of SA techniques, e.g., Liu et al. [8] and Borgonovo [14]. The Ishigami function is 

formulated as 

    (11) 

 

where Xi (i = 1, 2, 3) are three input parameters assumed to be independent from each other. Besides, a 

and b are parameters and normally set to be 5 and 0.1, respectively. The probability density function 
for input parameter Xi (i = 1, 2, 3) is given by the uniform distribution in [– π, π] 

 

    (12) 

 

3.2.1. Computational Methods 

 

For the one-way sensitivity analysis (using a tornado diagram), we followed the same method by 

Clemen et al. [18], as we did in the previous model example. The nominal value was set to 0, 

corresponding to the mean and median of the distribution given by equation (12). On the other hand, 

the minimum and maximum ranges of each input parameter were set to – π and π, respectively. These 

correspond to the lower and upper bounds of the uniform distribution for each input parameter, given 
by equation (12). Then, a tornado diagram was computed to compare the relative impact of each input 

parameter. The tornado diagram was obtained as follows. First, the output Y of the Ishigami function 

was calculated with one of the input parameters being gradually increased from its lower to upper 

bound, while the other input parameters were fixed at their nominal values. Next, the minimum and 

maximum values of these outputs were plotted on a horizontal bar chart. In the graph, the nominal 

output, the model output computed with fixing all input parameters at their nominal values, is set as 

the zero point of the x-axis.  
 

The Si
 (CDF)

 for the Ishigami function was computed using the method explained in Section 3.1.2. For 

all calculations (unconditional/ conditional model outputs) a sampling size of n = 10,000 was used.  
 

3.2.2. Comparison of the Results 

 
The tornado diagram for input parameters in the Ishigami function is plotted in Figure 4. There is not a 

bar chart for input parameter X3 because the sensitivity of model output to the input parameter X3 is 

zero when using the tornado diagram method.  Viewing Figure 4, we observe that input parameter X2 

appears to be the most sensitive input parameter. The ranking of input parameters, based on its 

(ranking) impact on model output, was calculated as X2 > X1 > X3. 
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Figure 4: Tornado diagram of input parameters in Ishigami function 

 
 

Table 3: Ranking of input parameters in the Ishigami function based on Si

 (CDF)
 

Ranking 
Input  

Parameter 

Mean Value  

Si

 (CDF)
 

95 % CI  

Lower Limit 

95 % CI  

Upper Limit 

1 X1 0.834 0.828 0.839 

2 X2 0.686 0.681 0.691 

3 X3 0.450 0.444 0.456 

 

 

On the other hand, the ranking of input parameters of the Ishigami function obtained by Si
 (CDF) 

is 
shown in Table 3. This table shows that the ranking of the input parameters are calculated as X1 > X2 > 

X3. As no overlap of 95 % CIs is observed, it can be concluded that this ranking of the input 

parameters is statistically significant with a 95% confidence level.  Both techniques, i.e., using 
variance-based and moment-independent GIM in references [8,15] reported that X1 is the most 

sensitive input parameter. In other words, X1 has the highest contribution to the variation of the model 

output. The result of this work is in agreement with the ranking reported by [8] and [15].  
 

In the above calculations, the numbers of samplings were set to n = 10,000 for both layers of MC 

sampling. Because the Si
 (CDF)

 does not show an overlap among the CIs as presented in Table 3, these 

numbers of samplings were large enough to get a statistically significant ranking of input parameters. 

However, when considering the application of Si
 (CDF) to a complex simulation model such as the 

simulation module of GSI-191 project [4], it is desirable to investigate the optimal numbers of random 
samplings so that we are able to obtain the statistically significant ranking of input variables with as 

low computational cost as possible. The following demonstrates the preliminary effort of finding the 

optimized numbers of samplings. 

 

As the first step, we determined the numbers of samplings in the second-layer of MC sampling 

(denoted as n2) based on the half-width of 95 % CI of unconditional model output. Namely, the n2 was 

selected so that the relative error of the unconditional model output became less than 10 % of the 

expected value of the unconditional model output. Based on the criteria, we obtained n2 = 700.  

 

Also, we obtained the numbers of samplings for the first-layer of MC sampling (denoted as n1) based 
on the half-width of 95 % CI of A (Xi) as defined in equation (4). First, we computed the standard 

deviation of A (Xi) (denoted as σ20) with n2 = 700 (determined previously) and n1 = 20, which is an 

arbitrarily chosen value. Then, the optimized value of n1 was estimated based on the following 
equation so that the half-width of 95 % CI became less than 10 % of expected value. 
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Table 4: Ranking of input parameters in the Ishigami function based on Si

 (CDF)
, with the 

optimized numbers of samplings 

Ranking 
Input  

Parameter 

Mean Value  

Si

 (CDF)
 

95 % CI  

Lower Limit 

95 % CI  

Upper Limit 

1 X1 0.802 0.745 0.859 

2 X2 0.632 0.574 0.690 

3 X3 0.407 0.341 0.473 

 

                                            (13) 

      

where z 0.025 is z-value corresponding to 5 % significance level, and E [A (Xi)] is the expected value of 

A (Xi) calculated with n1 = 20. As a result, the optimized number of n1 was calculated as n1 = 90. 

 
Using the optimized value of n1 = 90 and n2 = 700, the ranking of input parameters in the Ishigami 

function was recalculated (Table 4). The ranking of input parameters was calculated as X1 > X2 > X3 

without overlap of CI. The result demonstrated that the optimized numbers of samplings, which are 
much less than the original value (n1 = n2 = 10,000), were large enough to obtain a statistically 

significant result. This fact indicated the possibility of optimizing the numbers of samplings based on 

the criteria of relative error in the future application of Si
 (CDF)

 to a complicated and large simulation 

model (e.g., simulation module in IPRA). 

 

3.3 A Fault Tree Model  

 

As the third example, a tornado diagram and Si
 (CDF) were applied to a fault tree model that was first 

proposed by R. L. Iman [19] in order to check the functionality of the sensitivity analysis method, and 

was also used by Q. Liu et al. [8]. The Boolean expression of the fault tree model is given by 

         (14)

  

where Y is the occurrence frequency of the top event of the fault tree model. This fault tree model has 

seven input parameters (Xi, i = 1, 2, ,7). Among them, X 1 and X 2 correspond to the initiating events 
and are given by the number of occurrences per year. On the other hand, the input parameters X 3 

through X 7 denote the basic events of the fault tree and are expressed in failure probabilities. In this 

application, all input parameters are given by a lognormal distribution of mean values and error factors 
that are summarized in Table 7. All input parameters are assumed to be independent from each other. 

 

3.3.1. Computational Method 
 

As in the two previous examples, we followed the method by Clemen et al. [18] for computation of the 

one-way SA. The nominal value was set to the median of lognormal distribution for each input 

parameter. On the other hand, the minimum and maximum ranges of input parameters were set to 5th 

percentile and 95th percentile of lognormal distribution, respectively. In the graph, the nominal output, 

the model output computed with fixing all input parameters at their nominal values, is set as the zero 
point of the horizontal axis.  

 

The Si
 (CDF)

 for the fault tree model was explained in Section 3.1.1.. The sampling size for calculation 
of conditional/unconditional model output was set to 1,000 in this example.  
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Table 5: Distribution, mean value, and error factor of the input parameters of fault tree model. 

Parameter Distribution Mean value Error factor 

X 1 Lognormal 2 2 

X 2 Lognormal 3 2 

X 3 Lognormal 0.001 2 

X 4 Lognormal 0.002 2 

X 5 Lognormal 0.004 2 

X 6 Lognormal 0.005 2 

X 7 Lognormal 0.003 2 

 

 

3.3.2. Comparison of the Results 

 

The tornado diagram for input parameters of the fault tree model is plotted in Figure 7. This shows 

that, for both increased and decreased value of each input parameters, the ranking of input parameters 

based on their one-way influence on the model output (corresponding to the length of bar graph in 

Figure 7) is calculated as X3 > X1 > X7 > X4 > X5 > X6 > X2.  

 

Besides, the ranking of input parameters in the fault tree model using Si
 (CDF)

 is shown in Table 8 as 
well as the mean value and 95 % CI of Si

 (CDF) for each input parameter. Based on the mean value of Si
 

(CDF), those input parameters are ranked as X3 > X1 > X7 > X4 > X5 > X6 > X2, the same ranking as Q. 

Liu et al. [8]. This ranking is in agreement with the result from the tornado diagram (Figure 7). 
Meanwhile, because there is no overlap between 95 % CIs, this ranking based on Si

 (CDF) is statistically 

significant. 

 
 

 

 

Figure 5: Tornado diagram of input parameters for the fault tree model. 

 

 
 

 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Table 6: Ranking of input parameters in the fault tree model based on Si

 (CDF)
 

Ranking 
Input  

Parameter 

Mean Value  

Si

 (CDF)
 

95 % CI  

Lower Limit 

95 % CI  

Upper Limit 

1 X2 0.273 0.261 0.284 

2 X6 0.223 0.214 0.233 

3 X5 0.200 0.192 0.209 

4 X4 0.146 0.139 0.152 

5 X7 0.115 0.110 0.119 

6 X1 0.102 0.098 0.106 

7 X3 0.076 0.073 0.078 

 

 

3.4 A Fault Tree Model : Involving Common Cause Failure 

 

A tornado diagram and Si
 (CDF) 

are applied to a fault tree model of a hypothetical system involving 

common cause failure (CCF). The block diagram of the hypothetical system is illustrated in Figure 6. 

In this system, the D components are identical redundant components that are subjected to CCF. The 

Boolean expression of the fault tree model is given by 

    (15) 

where T is the top event of the fault tree model. In this equation, Dj,I (j = 1, 2, 3) denotes the 
probability of independent failure of D components, while D123,C denotes the CCF of redundant D 

components. Here, the CCF of redundant components is modeled by the beta factor approach. The 

probability of the top event (T) is formulated by 

      (16) 

where Pr (DT) is the probability of failure of component D in total (i.e., the sum of independent and 

CCF of component D), and β is the beta factor for redundant D components that is defined as the ratio 

of CCF to the total failure. 

 

All the input parameters of the fault tree model (i.e., failure probabilities of components and beta 

factor) are given by distribution, as listed in Table 7. The failure probabilities of components are given 
by lognormal distribution, of which mean value and error factor are shown in Table 7. Besides, the 

beta factor for the CCF of redundant component D is given by a uniform distribution, of which lower 

and upper bounds are shown in Table 7. During the computation of top event probability in equation 
(16), all input parameters are assumed to be independent from each other. 

 

 

Figure 6: Block diagram of the hypothetical fault tree model 
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Table 7: Distribution for the input parameters of fault tree model 

Parameter Distribution Mean value Error factor 

A Lognormal 2.0 × 10-5 2.0 

B Lognormal 7.0 × 10
-4

 4.0 

C Lognormal 3.0 × 10
-4

 4.0 

DT Lognormal 1.0 × 10-3 1.6 

    

Parameter Distribution Lower bound Upper bound 

β Uniform 0.05 0.15 

 

3.4.1. Computational Method 

 
Similar to the previous two examples, we followed the method by Clemen et al. [18] for computation 

of the one-way SA using the tornado diagram. The nominal value was set to the median of distribution 

for each input parameter. On the other hand, the minimum and maximum ranges of input parameters 
were set to the 5th percentile and the 95th percentile of distributions, respectively. Then, the tornado 

diagram was obtained as follows. First, the probability of top event (T) of the fault tree model given by 

equation (16) was calculated with one of the input parameters being gradually increased from its 
minimum to maximum ranges, while the other input parameters were fixed at their nominal values. 

Next, the minimum and maximum values of these outputs were plotted on a horizontal bar chart. In 

the graph, the nominal output, the model output computed with fixing all input parameters at their 

nominal values, is set as the zero point of the horizontal axis.  

 

The Si
 (CDF)

 for the fault tree model was explained in Section 3.1.1. The sampling size for calculation of 

conditional/unconditional model output was set to 2,000 in this example.  

 

3.4.2. Comparison of the Results 
 

The tornado diagram for input parameters of the fault tree model is plotted in Figure 7. Based on the 

length of the bar graph, the total failure probability of component D (DT) has the largest influence on 

the model output (i.e., the probability of top event), followed by beta factor (β) and the failure 

probability of component A. According to Figure 7, the failure probabilities of components A and B 

contribute little to the change of top event probability. This indicates that both components A and B are 

not significant in terms of the influence on the model output. Therefore, the ranking of input 
parameters based on their one-way influence on the model output is obtained as DT > β > A >> B ~ C.  

 

Meanwhile, the ranking of input parameters in the fault tree model using Si
 (CDF)

 is shown in Table 8. 
Based on the mean value of Si

 (CDF), the beta factor (β) is ranked the first, followed by the total failure 

probability of component D (DT) and failure probability of component A. Besides, the mean values of 

Si
 (CDF)

 for the failure probability of components B and C are relatively small compared with those for 
other input parameters, and we are not able to rank them separately since their 95 % CIs overlap with 

each other. As a result, Si
 (CDF)

 produces the ranking of input parameters as β > DT > A >> B ~ C. This 

is not in agreement with the result of the one-way SA method in the ranking for first and second most 

significant input parameters.  
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Figure 7: Tornado diagram of input parameters for the fault tree model 

 

 

Table 8: Ranking of input parameters in the fault tree model based on Si

 (CDF)
 

Ranking 
Input  

Parameter 

Mean Value  

Si

 (CDF)
 

95 % CI  

Lower Limit 

95 % CI  

Upper Limit 

1 β 0.2241 0.2196 0.2286 

2 DT 0.2091 0.2031 0.2151 

3 A 0.0574 0.0552 0.0596 

4 B 0.0137 0.0135 0.0139 

4 C 0.0135 0.0133 0.0137 

 

3.5. Discussion 

 
According to the results in previous sections, the one-way SA using a tornado diagram produced the 

same ranking as GIM (Si
 (CDF)) for the hypothetical system model (Section 3.1) and for the first fault 

tree model (section 3.3), but it produced a different ranking for the Ishigami function (Section 3.2) and 

the second fault tree model involving CCF (Section 3.4). This difference indicates that the one-way 

SA possibly leads to a different ranking from GIM when the risk model is defined by a non-linear 

function. Here, non-linearity means that a risk model involves the correlation among the input 

parameters. In other words, if the first derivative of risk model with respect to every input parameter is 

constant, then the risk model is linear. When the first derivative is not constant, the risk model is 

considered as non-linear. In that sense, the Ishigami function is clearly non-linear since the first partial 
derivative of the function (Equation (11)), with respect to an input parameter always results in the 

function of that input parameter. The second FT model (Section 3.4) is also non-linear. On the other 

hand, the four-component hypothetical system model (Section 3.1) and the first FT model (Section 

3.3) are linear since the first partial derivative of risk function is a constant with respect to input 

parameters. In a complex computational model, such as the simulation module in IPRA, the risk model, 

in most cases, involves a non-linearity since the input parameters can naturally have the correlation 

among each other that is induced by the common underlying physical mechanics.  

 

The difference in rankings by the one-way SA and GIM on a non-linear model has several causes. 

First, a tornado diagram ranks input parameters based on the maximum deviation of model output 
value from its nominal output value (i.e., the output computed with setting all input parameters to their 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

nominal values). However, Si
 (CDF)

 ranks input parameters based on the change of the entire CDF of the 
model output. When we evaluate the impact of uncertainty of input parameters on the uncertainty of 

model output, it is necessary to account for the entire distribution of the model output [8]. Thus, the 

ranking of the Si
 (CDF)

 method is considered to be more informative and accurate than the ranking based 
on a tornado diagram. Second, the difference is related to the manner of varying the input parameters 

during the analysis. In a tornado diagram, only one input parameter is varied from its lower to upper 

bound, while the other input parameters are fixed at their nominal values. This is why a tornado 

diagram is categorized as “one-way sensitivity analysis”. On the other hand, Si
 (CDF) is computed by 

randomly sampling all input parameters from their distributions. When we rank the input parameters 

given by distributions, the “global” analysis is needed to take into account the entire distribution of 
input parameters and the interactions among them. Therefore, the ranking by Si

 (CDF) reflects more 

information on the ranking than that of a one-way SA method such as a tornado diagram. 

 
Moreover, a tornado diagram presents a difficulty in choosing appropriate nominal values for input 

parameters. In Figure 4, the sensitivity of the model output to input parameter X3 was computed to be 

zero. This result is questionable when compared to the ranking based on Si
 (CDF)

. The zero sensitivity to 
input parameter X3 is caused by the selection of nominal values of the other input parameters (X1 = 0 

and X2 = 0) rather than the nature of the model output. This example illuminates the potential difficulty 

in choosing nominal values and ranges of each input parameter, and this is one of the main motivators 

for considering the adoption of the GIM for the application to the IPRA. 

 

4. CONCLUSION 

 
In this paper, an IM methodology suitable for an integrated PRA (IPRA) framework for Nuclear 

Power Plants (NPPs) is investigated. In IPRA, the classical PRA of the plant is used, but specific areas 

of concern (e.g., fire, GSI-191, organizational factors, and seismic) are modeled in a simulation-based 
module (separate from PRA) and the module is then linked to the classical PRA of the plant. Because 

of the complexity and non-linearity of IPRA, the conventional/local IMs (e.g., FV, RAW) may be less 

informative for such IPRA, and, so this research compares the local and Global Importance Measure 
(GIM) methodologies and explains the importance of GIM for IPRA.  

 

The research also demonstrates the application of two types of global methodologies (i.e., the one-way 

SA and the CDF-based Si
 (CDF), as a moment-independent GIM) to four illustrative example models 

(i.e., a hypothetical system model, a non-linear mathematical model, and two fault tree models) and, 

based on the comparison of the results, selects the CDF-based Si
 (CDF)

 as an appropriate IM for IPRA. 

The results conclude that for a non-linear risk model, the two methods produce a different ranking of 
input parameters. In addition, they indicate that when the one-way SA is applied to a complex risk 

model, the analyst may have difficulty in selecting the appropriate nominal values for the input 

parameters. The CDF-based Si
 (CDF)

 is more accurate than the local IM and one-way SA because it can 
capture three key features: (1) distribution of input parameters, (2) interactions among input 

parameters, and (3) distribution of the model output. When applying CDF-based Si
(CDF)

, the analyst 

should consider careful selection of sampling approach. As shown in the result on Ishigami function, 

the number of random sampling determines the width of confidence interval, and thus, it has a crucial 

effect on the decision-making involving the identification of risk-significant factors based on the 

ranking of input parameters. The result of investigation on the optimized number of random sampling 
(Section 3.2.3) indicates that the criteria based on relative error can be used to estimate the optimal 

number of sampling. As a work in progress, the CDF-based Si
 (CDF)

 method is being applied to IPRA in 

the risk-informed resolution of GSI-191 [4]. A future paper will report on the results of this GSI-191 
GIM study.  
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