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Abstract: The quantitative calculations of Nuclear Power Plant (NPP)’s repairable system are mainly 

based on Markov model. However, with the increase of the system’s size, the system’s state space 

increases exponentially, which makes the problem hard or even not to be solved. This paper proposes 

a method about quick calculation of Dynamic Fault Tree (DFT) for NPP’s repairable system based on 

Minimal Cut Sequence Set (MCSS), which divides a complex DFT into individual failure chain 

defined by MCSS. For each failure chain, the Markov model is applied. Then the unavailability of 

system is obtained synthesizing the result of each failure chain. This approach decreases the system’s 

size increasing from exponentially to linearly and reduces the computation complexity. As to the 

NPP’s dynamic systems with low failure rate and high repair rate, this approach can give a solution 

with a high-precision and conservative result and has practical value. 
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1.  INTRODUCTION 
 

To ensure the operating safety and design balance of NPP, it is essential to make reliability 

assessment of critical safety-critical systems. The real-life safety- critical systems of NPP often exhibit 

dynamic failure mechanisms, i.e., sequence- and functional- dependent failure behaviours, which 

make it hard to model and analyze the systems’ reliability. For the powerful modelling ability and 

intuitiveness of DFT, NPPs often adopt DFT to describe the failure behaviours of the systems. The 

commonly-used methods for quantifying a DFT are mainly Markov-based [1,2], multi-integration-

based [3,4,5] and Monte Carlo simulation-based methods [6,7]. However, each of these approaches 

has its own shortcomings: For Markov-based method, it is only applicable for exponential components 

time-to-failure distribution systems. Moreover, this method often confronts the problem of “state space 

explosion”; as to the multi-integration-based method, this method is only applied to non-repairable 

systems; as to the Monte Carlo simulation-based method, it may be very time-consuming, especially 

when the solutions with high degree of accuracy are desired. In addition, a new simulation procedure 

must be implemented whenever a component’s failure parameters value changes. Considering some 

components existing in NPP are repairable, it is necessary to develop a practical approach for 

evaluating the reliability of repairable systems of NPP which should be easily to be implemented and 

computed. In this paper, an approach used to evaluate the reliability of repairable system of NPP based 

on MCSS is proposed. 

The reminder of this paper is organized as follows: Section 2 gives some related models and 

concept, including the MCSS model, the proposed model, and the uniqueness property of DFT’s 

MCSS. Section 3 implements numerical experiments of the proposed model. Section 4 presents two 

cases study. Section 5 gives the final conclusions. 

 

2.  RELATED MODELS AND CONCEPTS 
 

2.1. The MCSS Model  
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It is well known the occurrences of a DFT’s top event not only depend on the combination of basic 

events but also depend on their failure orders. To characterize this failure behaviour, the researchers [8] 

propose a new concept of Minimal Cut Sequence (MCS) which is used to express what minimal basic 

events combination and in what failure orders that can lead to the occurrence of a DFT’s top event. A 

MCS comprises several capital letters characterizing the failure behaviour of basic events and some 

temporal connecting symbols ( ) expressing specific failure sequence. For an illustrative purpose, an 

example is shown in Fig.1. 

 

Fig.1: An Illustrative Example 
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The OR gate, i.e., top event, fires if any input event occurs. As to the CSP gate, it fires only if all 

input events fail. Considering the cold standby component B never fails before primary B fails, the 

MCS of the CSP gate is written as: A B . As to the PAND gate, it fires only if all input events fail in 

a left to right failure order, thus the MCS of the PAND gate is expressed as: C D . Since the failure 

behaviour of the example is expressed by the logic OR of the two dynamic gates, the Minimal Cut 

Sequence aggregate of the system is ,A B C D . How to obtain the complete MCS of a general 

DFT is beyond the scope of this paper, the interested readers can refer to Refs. [9,10,11] for more 

information. 

A DFT generally have more than one MCS and all these MCS compose a set, i.e., Minimal Cut 

Sequence Set (MCSS). So the MCSS captures the complete failure information of a DFT. Suppose a 

DFT has n MCSs, and then the MCSS of the DFT can be written as: 

                                                    1 2 nMCSS MCS MCS MCS                                               (1) 

The occurrence probability of the top event can be expressed by 

                                                        
   

 1 2

r r

r n

P system failure P MCSS
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

                            (2) 

To solve the Eq. (2), an Inclusion-Exclusion Principle [12] is applied as follows: 
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Apparently, the MCSS model is an algebraic approach. it avoids the notorious problem of “state 

space explosion”. Yet this approach is becoming unavailable when the system is repairable.  

 

2.2. The Uniqueness of A DFT’s MCSS 

   
The uniqueness of a DFT’s MCSS means that the MCSS is unique once the system’s DFT is 

modelled determinately. That to say the MCSS is independent on whether the system is repairable or 

not. It is well know the occurrences of a DFT’s top event are determined jointly by the combinatorial 

and sequential constraints. For a DFT, the combinatorial and sequential restrictions are uniquely 

decided. As a result, whether a system is repairable or not, the MCSS of the system’s DFT is unique. 

Suppose a system has n components and its corresponding DFT has m MCSs, then the Eq. (4) must 

hold. 
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Where  b   denotes a non-repairable component,   ,b    expresses a repairable component,   , 

 is the failure rate and repair rate of a component, MCSSR is the MCSS of the repairable system and 

MCSSNR is the MCSS of the non-repairable system.  Therefore, the MCSS of a repairable system can 

be obtained using the approaches mentioned in [9,10,11]. 

 

3.  THE PROPOSED MODEL 
 

As to a repairable system’s DFT, the top event fails if any MCS occurs, and vice versa. Therefore, 

the reliability of a repairable system is closely related to the MCSS of its corresponding DFT. Assume 

a system components has low failure rate and high repair rate, then the time deviating from the normal 

state, especially the time in failure state is much less than in normal state. For an illustrative purpose, 

we suppose a system state set {S0, S1, S2, S3, S4}. S0 is the initial state, S1, S3, S4 are the degraded 

states, S2 is the failure state. The system states transition schematic is shown in Fig. 2. 

 

Fig.2: The Schematic of System States Transition 
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Assume the system runs for T hours and the time staying at every state are TS0, TS1, TS2, TS3, TS4. 

Then the unavailability Q of the system can be calculated by 

                                                               

2 2

4

0

S S

Sii

T T
Q

TT


 


                                                        (5) 

To reduce the model scale, we directly adopt the failure chain ( 0 1 2S S S ), i.e., approximate 

model, to express the system states. Meanwhile we suppose the time at each state are '

0ST , '

1ST  '

2ST , and 

then the approximate unavailability Qapp of the system can be computed by 

                                                                      

' '

2 2

2 '

0 Si

S S
app i

i

T T
Q

TT




 


                                                        (6) 

Considering the approximate model gives up two degraded states, i.e., S3 and S4, it increase the 

duration that the system staying at failure state, i.e., '

2 2S ST T . Combining the Eq. (5) and (6), we have 

                                                                      
'

2 2S S
app

T T
Q Q

T T
  

                                                   
 (7) 

The Eq. (7) indicates the solution obtained by the approximate model is comparatively conservative. 

Let  1 2 3 4max , , ,     ,  1 2 3 4min , , ,     , and then the following Equation holds. 

 
0

lim 0app

or

Q Q








                                                             (8)  

Apparently, as  is small or  is large, we can adopt an approximate model to evaluate the 

reliability of a repairable system, i.e., Q ≈ Qapp. As to the repairable system with small failure and high 

repair rate, the failure chains capture the most failure information which can be understood as the 

failure chains contribute significantly to the system failure. In this point of view, we propose a 

generalized approximate model for evaluating the reliability of a repairable system. Suppose a 

repairable system has n failure chains, i.e., 1 2 , nL L L, ,  determined by the MCSS, and then the 

approximate model is expressed by 
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   
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1 2
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app app app n
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                     (9) 

 

4. NUMERICAL EXPERIMENT 
 

4.1. Experiment Design 

 

To validate the proposed model, a numerical experiment is implemented. First, we define the 

ratio of a DFT’s failure chains as /
L

N N . Where,
L

N  is the number of the failure chains, N is the total 

number of the chains. For1
L

N N  , and then we can get1/ 1N   . Without loss of generality, we 

choose PAND gate ( 1/ N  ) and WSP gate ( 1  ) as our experimental subjects. The corresponding 

approximate models are shown in Fig.3 and Fig.4 separately. 

 

Fig.3: Approximate Model for PAND gate (n=2) 
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Fig.4: Approximate Model for WSP gate (n=2) 
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The experiment designs are described in Table 1. 

 

Table 1: The Experiment Designs 

Note：the right superscript ”d” of design parameters presents component in standby state; is a dormant factor, and  =0.1; 

n is the total number of the input events; (1) (2) (2)0.5 0.25 0.5i i i     , { (1)

1 , (1)

2
,..., (1)

n } ={1.0E-2, 5.0E-3, 2.5E-3, 1.0E-

3, 5.0E-4, 2.5E-4, 1.0E-4, 5.0E-5, 2.5E-5, 1.0E-5, 5.0E-6, 1.0E-6, 5.0E-7, 1.0E-7}, (1)

i = (2)

i = (3)

i . 

 

 

 

 

 

The Gate Type The Schemes Design Parameters Design Points Mission Time(h) 

PAND 

Scheme 1: n=2 
1 2 n      

1 2 n      

(1) (1)( , )i i   

T=10
6
 

Scheme 2: n=3 (2) (2)( , )i i   

Scheme 3: n=4 (3) (3)( , )i i   

WSP 

Scheme 1: n=2 
2 3 1

d d d

n        
1 2 n      

(1) (1)( , )i i   

Scheme 2: n=3 (2) (2)( , )i i   

Scheme 3: n=4 (3) (3)( , )i i   
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4.2. Experiment Results and Analysis 

 
The experiment results are shown in Fig.5-Fig.10, and the relative error between approximate model 

and exact model are shown in Fig.11-Fig.14. The relative error is defined as:   /er app exc excQ Q Q   , 

where the Qexc is the exact solution. 

 

Fig.5: Scheme 1 of PAND Gate              Fig.6: Scheme 2 of PAND Gate  
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 Fig.7: Scheme 3 of PAND Gate               Fig.8: Scheme 1 of WSP Gate 
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Fig.9: Scheme 2 of WSP Gate                   Fig.10: Scheme 3 of WSP Gate                                                         

0.000 0.002 0.004 0.006 0.008 0.010
1E-22
1E-21
1E-20
1E-19
1E-18
1E-17
1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-9
1E-8
1E-7
1E-6
1E-5

U
n

a
v

a
il

a
b

il
it

y

Failure Rate

 app  =0.5h

 exc  =0.5h

 app  =1h

 exc  =1h

 app  =2h

 exc  =2h

n=3

(1/h)

 
0.000 0.002 0.004 0.006 0.008 0.010

1E-22
1E-21
1E-20
1E-19
1E-18
1E-17
1E-16
1E-15
1E-14
1E-13
1E-12
1E-11
1E-10
1E-9
1E-8
1E-7

U
n

a
v

a
il

a
b

il
it

y

Failure Rate

 app h

 exc  =0.5h

 app  =1h

 exc  =1h

 app  =2h

 exc  =2h

n=4

(1/h)

 
 

 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Fig.11: the for Scheme 1 of PAND Gate   Fig.12: the for Scheme 1 of WSP Gate 
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Fig.13: the for Scheme 3 of PAND Gate    Fig.14: the for Scheme 3 of WSP Gate 
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Fig.5-Fig.10 shows at each design point, the result obtained from the approximate model is in good 

agreement with that from the exact model (Markov-based). In addition, Fig.11-Fig.14 demonstrates 

the results calculated by the approximate model are conservative compared with the exact solutions. 

Moreover, with the decrement of the failure rate or the increment of the repair rate, the value er is 

becoming smaller and smaller, and even can be neglected. It is found the value 
er from WSP gate is 

smaller than that from PAND gate at the same design point, which can be interpreted as that with the 

augment of the failure chain ration ( ), the accuracy of the approximate model is becoming higher 

and higher. Considering ∈ [1/N, 1] and most components in NPP with high repair rate and low 

failure rate, it is reasonable that the proposed model is valid and conservative for NPP’s dynamic 

repairable systems. 

 

5. CASE STUDY 
 

5.1 Case Study 1 

 
For model validation purpose, a case study is analyzed which is from a partial safety system of one 

Chinese NPP. The system’s DFT model is shown in Fig.15 and its corresponding approximate model 

is shown in Fig.16. 
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Fig.15: The Simplified DFT Model                           Fig.16: The Approximate Model 
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    The reliability parameters of the components contained in the case 1 are listed in table 2. 

 

Table 2: Reliability Parameters for Case 1 

 

Note: the symbol Da denotes the component D in working state; Dd denotes the component D in standby state; the time-to 

failure and time-to-repair of all components are following exponential distributions. 

  

We suppose that the mission time of the system is 5000h. For comparison purpose, we apply the 

approximate model and exact model, i.e. Markov-based model, respectively to analyze the system’s 

unavailability. The steady and average unavailability of the system calculated by the approximate 

model and exact model are listed in Table 3. 

 

Table 3: Results of Case 1 

 

Analysis: As to the Markov-based model, i.e., converting the whole DFT into Markov Chain, the 

number of the system states would grow up to 2
7
. It is a hard and error-prone job. By contrast, the max 

number of the states defined by the longest failure chain involved in our proposed model is only 4. 

Therefore, the proposed method is more efficient than the Markov-based approach. In addition, the 

results calculated by the proposed method are highly matched with those obtained by the Markov-

based method.  

 

5.2. Case Study 2 

 
For further model validation purpose, a more complex case is analyzed, which is from a partial I&C 

safety system of one Chinese NPP. The system’s simplified DFT model is shown in Fig.17.  

 

 

 

 

 

 

Component Failure Rate Repair Rate Component Failure Rate Repair Rate 

A 1.0e-7 0.25 Dd 2.0e-4 1.00 

B 5.0e-7 1.20 E 1.4e-3 2.00 

C 1.0e-7 1.50 F 2.5e-3 3.00 

Da 5.0e-7 1.00 G 2.0e-3 0.50 

 Approximate solution Exact Solution Relative Error ( ) 

Average Unavailability 1.93036E-6 1.93031E-6 2.5903e-5 

Steady Unavailability 1.95397E-6 1.95367E-6 1.5356e-4 
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Fig.17: The Simplified DFT Model                     Fig.18: The Approximate Model 
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 The reliability arguments of the system’s components are shown in Table 4. 

 

Table 4: The Reliability Parameters for Case 2 

   Similarly, we adopt the proposed method and Markov-based method to analyze this system’s 

unavailability separately. Assume the failure time and repair time of system’s components follow 

exponential distribution and the mission time of the system is 5000h, and then the solutions of the 

system’s unavailability obtained by the two methods are listed in Table 5. 

 

Table 5: Results of Case 2 

Obviously, the results obtained by our proposed method are very close to those derived by the 

Markov-based method. 

 

 

 

 

 

 

 

 

Component Failure Rate Repair Rate Component Failure Rate Repair Rate 

B 8.5e-4 0 Fa 1.0e-2 3 

C 1.0e-4 12 Fd 2.0e-3 3 

D 1.0e-2 3 G 1.0e-2 2.5 

Ea 1.0e-2 3 H 6.0e-3 3.5 

Ed 2.0e-3 3 I 5.0e-3 2 

 Approximate solution Exact Solution Relative Error ( ) 

Average Unavailability 8.42951E-6 8.42191E-6 9.024E-4 

Steady Unavailability 6.49651E-6 6.48887E-6 1.200E-3 
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6. Conclusions 
 

As to the repairable systems modelled by DFTs, the quantitative analyses of these systems are 

mainly based on Markov approach. Although this approach can offer an exact solution, it may 

confront the notorious problem of “state space explosion”. For a large-scale DFT, the conventional 

Markov-based method would become hard to be implemented. To solve this problem, this paper 

proposes an approximate method to analyze DFT with repairable components. This method divides the 

whole Markov Chain into separate failure chain and neglects the successful chains. Each failure chain 

is quantified by Markov-based method, and then the results of the separate failure chains are integrated 

to obtain the system’s unavailability. Therefore, in contrast to the conventional state space-based 

method, this method gets over the problem of “state space explosion”. The results of experimental 

design and cases analysis demonstrate, as to a system with high repair rate and low failure rate, this 

method can offer a solution with a high accuracy.  

For the NPP’s repairable systems, most components involved have low failure rate and high repair 

rate. It is reasonable the proposed method has a high engineering application value in NPP, which can 

be used to estimate the reliability of safety-critical system quickly. However, as to the repairable 

systems with high failure rate and low repair rate, it still needs further research. 
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