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Abstract: The final stage of quantification of Probabilistic Risk Assessment (PRA) or reliability logic 

models is usually carried out via processes that first obtain estimates of key component-level 

reliability and risk parameter values, such as the failure rate in the time domain, or the probability of 

failure (PoF) for a specific function or mission duration, and then propagate such values from the 

component to the subsystem and system levels according to the component logic arrangements 

reflected in system reliability and failure logic models. When applying uncertainty analysis techniques 

to the estimation of reliability or PoF parameters of components belonging to a given system, a 

conceptual problem arises as to whether the same bottom up process may be applied to the definition 

of the prior distributions of the parameters of interest, or whether better state-of-knowledge 

consistency and coherence may be achieved by a top down process that proceeds from the initial 

construction of a system level prior distribution for the parameter of concern.  This paper examines 

and discusses this and related issues that arise in the application of Bayesian analyses to a system PRA 

or reliability assessment.  
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___________________________________________________________________________ 

 

1.  INTRODUCTION 
 

The final stage of quantification of Probabilistic Risk Assessment (PRA) or reliability logic models is 

typically carried out via processes that seek to first obtain estimates of key component reliability and 

risk parameter values, such as the component failure rate in the time domain, or the probability of 

failure (PoF) for a specific function or mission duration, and then propagate such values from the 

component to the subsystem and system levels according to the arrangement of the component logic 

functions as represented in the combination of logic models used to represent the system reliability or 

risk, which in the PRA domain most commonly consists of a combination of binary event-trees and 

fault-trees. 

  

A common estimation process for component failure rates and PoFs applies Bayesian techniques, by 

which a prior distribution of the parameter value is first constructed based on what may be referred to 

as "soft knowledge," e.g., generic handbook indications and/or engineering judgment concerning 

where the range of the parameter may lie; then the best data related to the parameter is formally 

brought into the process via the definition of a Bayesian likelihood function; finally, in the last step of 

the estimation process the prior distribution and the  likelihood function are combined, by application 

of Bayes' theorem, to yield a posterior distribution" of the parameter, from which any desired 

statistics, such as mean or median value, standard deviation, percentiles and credible intervals – the 

Bayesian version of confidence intervals –, can also be extracted. 

 

While the application of this process for a single item or component is relatively straightforward, some 

challenging questions arise when the process is applied to a number of components that are part of a 

complex system and contribute to the overall reliability or failure characteristics of the system 

according to both functional logic arrangement and individual reliability features. Within a 

probabilistic framework these questions can be viewed as primarily concerning the relation between 

probability assessments relative to the individual components of a system or subsystem on one hand, 

and the system or subsystem itself on the other. However the same questions may also be addressed 
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from the broader perspective of what forms of uncertainty representation are appropriate under the 

conditions of concern. This paper examines these questions and perspectives specifically in relation to 

the objective of establishing and maintaining the self-consistency of a PRA or reliability model 

quantification framework, while using knowledge and data that may be applied at different levels of 

system indenture, i.e., depending on user preference, at different levels in the system functional 

hierarchy.  

 

2.  PRA RELEVANCE OF ISSUES 
 

The issue of consistency between Bayesian assessments for reliability or probability of failure (PoF) 

conducted at different levels of system indenture was initially discussed in papers published in the 90's 

and initially thought of as an anomaly of Bayesian probability estimation [1, 2].  The observation 

generating these discussion was that the application of the same evidence, if alternatively carried out at 

basic component or whole system level, seemed to produce substantially different results. This subject 

was also discussed in more general terms in [3] as an issue of "perfect (or imperfect) aggregation" of 

Bayesian estimates.  

 

Although the initial discussion of the aggregation or Bayesian anomaly issues dates several years back 

in time, it has gained new relevance in the context of PRAs executed in more recent times for launch 

and space vehicle applications. The initial PRA applications of the 80's and 90's were primarily for 

nuclear power plants, for which the bulk of the reliability data resided at the basic component levels, 

so that it was natural in this context to apply Bayesian estimations from the bottom up, i.e., by first 

constructing component-level PoF or reliability prior distributions using generic data, and then 

applying plant-specific evidence at the component and/or higher level, while progressing in the 

quantification process up the logic structure of a reliability or failure model, such as a fault tree. With 

many space systems, on the other hand, and more so in the particular case of launch vehicles, it is 

generally easier to construct system or subsystem-level priors than basic component priors, because 

generic knowledge of the range of reliability of any such a system is much better and more broadly 

established than corresponding knowledge for each of the basic components of which the system itself 

is composed.  For example, it is relatively easy and defensible to identify the interval {0.01, 0.10} as a 

reasonable range for the per mission PoF of a typical medium to heavy class U.S. Government 

certified launch vehicle. It is not as straightforward to identify any "prior" range of PoF or reliability 

for a check valve, electronic board, or other low level component of such a system. 

 

3.  UNCERTAINTY REPRESENTATION VIA PROBABILITY DISTRIBUTIONS 

VERSUS UNCERTAINTY INTERVALS 
 

A topic discussed in the literature that is related to what is being discussed here concerns whether 

"epistemic" uncertainty, i.e. the uncertainty that exists because of lack of knowledge, can properly be 

represented via probability distributions, as quite commonly is done in PRA. Ref. [4] argues against 

this, and uses several examples to illustrate the issue. Among these is the example of a quantity AB 

which is the product of a component A, known to have a value somewhere between 0.2 and 0.4, and a 

component B, known to have a value somewhere between 0.3 and 0.5, with no additional information 

available as to where the "true value" of either component may lie.  Ref. [4] observes that all that can 

be said about this situation is that the value of AB must then be somewhere between 0.06 and 0.2.  It 

also argues that equating the lack of knowledge concerning where the values of A and B may be with 

the probabilistic assumption of a uniform distribution in the respective intervals is beyond the real 

knowledge about those quantities.  Ref. [4] observes in fact that such an assumptions would lead to the 

probabilistic computation of a distribution for AB that is strongly peaked at an intermediate value 

between the two extremes, whereas the actual knowledge about AB cannot really go beyond the 

original assertion that it is somewhere in the interval {0.06, 0.2}.  

 

Translating the above into a PRA context of assessing and propagating uncertainty on probability of 

failure (or failure rate) values, we can see the analogy with a situation in which the quantities A and B 

are uncertain PoF values, about which the only knowledge is that they lie in the stated intervals, for 
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two components that represent redundant functionality for a system or subsystem.  Under these 

conditions, the PoF of that system or subsystem is given by the product AB, and the considerations 

made by [4] about what may be valid or invalid to determine about the AB value apply to this 

analogous situation.  

 

An additional observations about the situation discussed in [4] can be made if we consider the 

practice, long established in the probabilistic arena and known as Laplace's Principle of Insufficient 

Reason, of assuming a uniform probability distribution in a given range when nothing is known about 

a random variable besides the fact that it must fall somewhere within that range.  As shown below, this 

implies a contradiction between interval representation of uncertainty in the terms argued by [4] and a 

Bayesian probabilistic representation of the same uncertainty.  

 

The assertion by [4], based on interval analysis, is that all can be said about A, B and AB is that they 

are somewhere in the respective intervals {0.2, 0.4}, {0.3, 0.5} and {0.06, 0.2}, as represented by 

Figure 1. Translated in probabilistic terms by application of the above mentioned Principle of 

Insufficient Reason, this would lead to a representation of all three parameters as random variables 

uniformly distributed in the corresponding ranges, as shown in Figure 2. However, once probability 

distributions are defined to represent the A and B factors of a product AB, the axioms and laws of 

probability, together with the mathematical formulation linking the three variables, univocally define a 

specific form of the probability distribution of AB itself.  In the case where A and B are completely 

independent variables uniformly distributed in the intervals specified above, the distribution of their 

product AB looks like what is shown in Figure 3.  In summary, within a probabilistic framework, it 

appears contradictory to claim complete lack of knowledge of where the value of a dependent variable 

like AB may lie, if the same has been claimed for the values of the associate independent variables, 

like A and B, and vice versa. 
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Figure 1: Interval Representation of Variables A, B, and AB 
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Figure 2: Principle of Insufficient Reason Probabilistic Representation of Variables A, B, AB 
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Figure 3: Probability Distribution of AB Derived as Product of Uniform A and B Distributions 

 

For completeness, we observe that a way by which a uniform distribution can be obtained for the 

product AB when uniform distributions have separately been assumed for A and B does exist. This is 

if the value taken by one of the two terms, let us say B, is completely determined by the value assumed 

by the other in a certain specific fashion. For our example, this specific fashion would be that of a 

deterministic relation between A and B, such that, given that a random value of A occurs at a location 

corresponding to a fraction F of the A interval, then B is forced to a value that makes the product AB 

fall in a location corresponding to the same fraction F of the AB interval.  This de-facto reduces the 

situation to one where there is only one independent variable A, and the product AB is linked to it by a 

relation of proportionality. This extremely correlated condition is certainly not representative of the 

most common uncertainty assessment conditions that PRA analysts are faced with, thus the basic 

terms of the issue being discussed are not affected by this observation.  

 

3.1.  Relation to the Bayesian Aggregation Issue 

 

Even if it may not be immediately apparent, a relation exist between the issue discussed in [4] and the 

"Bayesian aggregation anomaly" issue.  

 

Refs. [1] and [2] presented the anomaly subject by considering a situation where two components, 

which herein we shall refer to as C1 and C2, are arranged functionally in series for the successful 

operation of a system S. This logic arrangement happens to be in reliability terms the functional 

opposite of the one discussed above as a reliability analogy of the AB product example discussed in 

[4], but this is purely coincidental and unimportant for the purposes of the present discussion, as shall 

be evident from the following. For the stated situation the cited references assume a prior knowledge 

of the PoF values for the components C1 and C2, and for the system S. Starting from this premise, a 

Bayesian assessment is applied with the benefit of hypothetical binomial evidence resulting from the 

system S being tested a number of times, with one observed system failure occurring because 

component C1, but not C2, fails. Under these conditions, a Bayesian assessment is carried in two 

different ways, which Refs. [1] and [2] consider to be equivalent:  

 In the first mode of assessment the test evidence is applied separately to the two component 

priors, and then the updated probabilities of failure (PoFs) are combined to provide the system 

PoF. 

 In the second mode of assessment the test evidence is applied directly to the system prior to 

yield the system PoF. 

Refs. [1] and [2] observe that the posterior results for PoF(S) turn out to be different in the two 

versions of the Bayesian assessment and consider this to constitute a probabilistic anomaly in light of 
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the fact that the same test evidence is applied in the two cases, which would lead to the expectation of 

same ultimate results. In reality, as discussed in [5], the "anomaly" can be explained by the fact that 

the two assessments start out from assumptions of prior distributions that are not equivalent to each 

other; thus, although the same test evidence is applied to the two situations, the non equivalence of the 

assumed priors makes it so that the two overall Bayesian processes considered in are not actually 

equivalent and cannot produce the same results.  

To better illustrate how the anomaly may occur, consider a modified version of the example initially 

used in Refs. [1] and [2], in which, for the same system configuration, no prior knowledge of the 

component and system PoFs is assumed to be available, and the test evidence is as summarized in 

Table I. The main modification of the example with respect to [1] and [2] consists of assuming a lower 

number of system tests (10 instead of 100), which has the effect of making certain aspects of the issue 

being discussed even more evident than when using the original case. 

Table I: Test Results 

 Component C1 Component C2 System S 

Prior PoF "Unknown" "Unknown"
 

"Unknown"
 

Number of  

tests 
10 10

 
10

 

Number of 

failures 
1 0 1 

 

Repeating the steps used in Refs.[1] and [2], in one version of Bayesian assessment the following 

Process 1 is applied: 

 

A. Reflecting the assumed complete lack of knowledge of the PoF values before the test, uniform 

priors are assumed for C1 and C2 in the theoretical PoF interval [0, 1]; 

B. the test evidence of 1 failure in 10 trials for C1, and 0 failures in 10 trials for C2 is applied to 

obtain posterior PoF distributions; 

C. the S system PoF is obtained from the OR-gate formula: 

  

    PoF(S) = 1 – [1 – PoF(C1)] [1 – PoF(C2)]        (1) 

 

In a second version of the assessment the evidence is not applied at the component level, but directly 

at the system level, i.e. according to Process 2: 

 

A. Reflecting the assumed complete lack of knowledge of the PoF value for S before the test, a 

uniform PoF prior is assumed for the whole system; 

B. the evidence of 1 system failure in 10 trials is applied to obtain the posterior PoF for the 

system S. 

 

Figure 4 shows that indeed the two processes produce different results for the posterior System PoF. 

However, the reason for the difference lies in the fact that the setting of priors in the two versions of 

the assessment is not equivalent, which in turn makes the two above processes to be themselves not 

altogether equivalent. In Bayesian "state-of-knowledge" terms this seems to imply that for a case like 

this an assessor cannot claim complete lack of knowledge of the PoF whereabouts at the same time at 

both the system and component levels.  

 

To verify what was just said above about the cause of the difference in results between Process 1 and 

2, a Process 3 can be applied to modify Process 2 in a manner that makes the use of the test evidence 

at the whole system level consistent with the Process 1 utilization of the same evidence at the 

component level. Process 3 would be applied as follows: 
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A. Reflecting the assumed lack of knowledge of the PoF values before the test, uniform priors are 

assumed for C1 and C2 in the theoretical PoF interval [0, 1]; 

B. a system prior PoF is obtained from the OR-gate formula, eqn.(1); 

C. the evidence of 1 system failure in 10 trials is applied to obtain the posterior PoF for the 

system S. 

 

The results of Process 3 do coincide at the S system level with those of Process 1, i.e., the system S 

posterior PoF produced coincides with the burgundy-shaded curve of Figure 4, as is actually shown by 

the direct comparison in Figure 5. It is noted in this regard that the small difference visible in Figure 5 

between the Process 1 and Process 3 System POF distribution results is actually due to a distribution-

fit approximation introduced to simplify the Bayesian updating process computations. 

 
Figure 4: Posterior Probability Distributions for System S PoF per Processes 1 and 2 

 

 
Figure 5: Posterior Probability Distributions for System S PoF per Processes 1 and 3 

 

It is also noted that if conversely one desired, in a situation like the one in the above example, to set up 

a system level prior PoF and then apply component-level test evidence, to maintain the overall 
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consistency of the estimation process it would then be necessary to decompose the S system prior PoF 

into component priors, in such a way as to satisfy eqn.(1). That is, the two component prior 

distributions, when combined by means of eqn.(1), would need to produce the initially defined prior 

PoF(S) distribution.  

 

Recalling the observation made in [4] with regard to the AB product example discussed earlier in 

Section 3, the non-equivalence of the two sets of prior distributions assumed in Refs.[1, 2] for the two 

types of Bayesian assessments can be conceptually related to the difference between obtaining the AB 

product distribution from assumed uniform distributions of A and B, versus assuming its value to be 

somewhere in between its known bounds. Ref. [4] is correct in pointing out this difference, regardless 

of whether one also accepts the associated argument that to assume any probabilistic distribution for a 

parameter when only its bounds are known represents an overstepping of knowledge. In the Bayesian 

assessment context of the Refs. [1, 2] discussion, the part of the observation that matters is that the 

assumption of uniform distributions for the PoFs of C1 and C2, in their possible intervals, is not 

equivalent to the assumption of a uniform distribution for the PoF of S in its possible interval. This is 

because the PoFs in questions are tied together by the mathematical relation of eqn.(1), which in turn 

reflects the logic relation of success and failure between the components C1 and C2 and the system S. 

In any probabilistic context the eqn.(1) relation is a constraint that must be obeyed at any stage of 

assessment. Thus in a Bayesian assessment it is a constraint that must be obeyed by both the prior and 

posterior PoF distributions relative to C1, C2, and S.  

 

In the context of the Ref.[4] discussion, a constraint conceptually corresponding to that expressed by 

eqn.(1) is represented by the relation between A, B, and the product AB. Despite the difference 

between the mathematical formulations of the two constraints, their effect is conceptually equivalent, 

in that any assumption of probability distributions for A and B in the Ref.[4] example, or the PoFs of 

C1 and C2 in the Refs.[1, 2] example, respectively forces the product AB and the PoF of the system S 

to have themselves distributions of nature and form which are determined by what has been assumed 

for the composing elements (A and B in the first example, PoF(C1) and PoF(C2) in the second). The 

converse is also true, so that if probability distributions are assumed for AB or PoF(S), any 

distributions of the composing terms (A and B in one case, PoF(C1) and PoF(C2) in the other) must be 

such that, when combined according to the mathematical formulations for AB and PoF(S), they 

produce the distributions assumed for the latter entities. 

 

The bottom line of what we have discussed above is that, in the presence of a logic-mathematical 

relation between uncertain quantities or parameters, an assessor must be very careful not to violate the 

associated constraints when making assumptions concerning ranges of uncertainty and translating 

these into the assumption of "state of knowledge" probability distributions. This is further discussed in 

the following sections. 

 

4.  PRA REPRESENTATION OF UNCERTAINTY FOR COMPONENTS AND 

SYSTEMS 
 

This section attempt to more directly connect the above discussion and observations to the question of 

how to maintain consistency in the representation of uncertainty and prior state-of-knowledge in 

probabilistic risk assessment (PRA) of multi-component systems. For this purpose, we will initially set 

aside the question of whether other ways of representing uncertainty should be considered as an 

alternative to treating uncertain parameters as probabilistically distributed random variables, but will 

come back to this question after discussing the key issue of consistency that a PRA assessor may face 

even in this more limited context. 

 

4.1.  Top-down versus Bottom-up Prior Knowledge Representation in PRA 

 

The discussion in Section 3.1 has brought to attention the constrained nature of the process of 

constructing probability distributions in the presence of a functional and/or mathematical relation 

among the parameters for which such distributions are constructed. 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

 

In the earlier classical forms of PRA application the consistency issues discussed in Section 3.1 did 

not come to the forefront, as these applications, primarily concerning nuclear power plants, carried out 

probabilistic quantification entirely from the bottom up, i.e., defining first "generic prior" probability 

distributions for reliability parameters at the component level, and then updating these priors with 

more plant-specific data available at increasingly higher levels of indenture in the overall plant PRA 

models.  In the simple conceptual example discussed in Section 3.1, this would be equivalent to 

defining prior PoF distributions for the two components C1 and C2, without having to worry about 

what definition of system S PoF prior distribution would be consistent with the priors assumed for C1 

and C2. 

 

As previously mentioned in Section 2, the situation may be different in other types of PRA 

applications, such as the space system PRAs which have become more common in recent years, where 

"prior generic knowledge" may be better assessed at the whole system level. After this is done first, 

mission-specific evidence is usually applied at lower levels in order to obtain output results that 

provide insights into subsystem or component behaviour, e.g. for the purpose of identifying 

contributors to which reliability and risk-reduction measures may be applied to obtain better overall 

system performance. Under these conditions, and specifically when Bayesian techniques are used in 

the probability assessments, it becomes necessary to construct individual subsystem and component 

prior distributions that, taken all together, maintain consistency with the overall uncertainty 

distribution assumed at the whole system level. 

 

4.2.  Constructing Component Priors from a System Prior 

 

An approach to the problem posed at the end of the above section has been discussed in [5], and it can 

be related back to what has been presented in Section 3.1. Using the same example of a system S 

constituted of two components C1 and C2, let us then assume the following: 

a) the assessor's initial knowledge of possible PoF values concerns in absolute terms primarily 

the system S; 

b) PoF results at the "posterior" level are desired for practical purposes at the component C1 and 

C2 level; 

c) test data for the two components are available to carry out assessments at the component level; 

d) before conducting any component level assessment with the available data, the assessor has no 

other direct knowledge or information concerning the possible values of the two component 

PoFs. 

 

Under the stated conditions, and more specifically because of what stated above in a), it would be 

reasonable for the assessor to initially start a Bayesian PoF estimation process from the definition of a 

system-level prior distribution for PoF(S). However, points b) and c) make also clear that results are 

desired at the component level and that test data to carry out a statistical estimation are available at 

that level. Because of this it becomes then necessary for the assessor to recast the system-level 

knowledge represented by the PoF(S) prior distribution into individual prior distributions for the 

component PoFs. Per the discussion carried out in Section 3.1, this cannot be done loosely, but in such 

a way that the interdependence of the three PoFs represented by eqn.(1) of Section 3.1 is satisfied. 

That is, whatever form of distribution is assumed for the prior PoF(S), the two component PoFs, as 

distribution functions, must be such that their combination in the form of eqn.(1) yields back exactly 

the distribution function assumed for PoF(S).  

 

In the above we essentially have a "decomposition" problem for a distributed parameter, i.e., a 

distribution function (rather than a single number) must be decomposed into sub-distribution functions 

that obey a given mathematical constraint, more specifically eqn.(1) for the example situation 

considered here. Ref.[5] discusses in detail how this problem can be set up and handled in 

mathematical terms for the same example situation. It must be noted that, unless additional 
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information is available, the solution to the decomposition problem is not unique when only one 

constraint applies, as represented by eqn.(1) or by any other single equation dictated by a different 

reliability logic linking component PoFs to system PoF. Thus, for example, in the solution discussed in 

[5] an additional constraint is introduced by assuming that the two component PoFs have the same 

mean values. In the case of real-life systems with multiple components arranged in series / parallel 

logic combinations, the decomposition problem may become correspondingly more complex and 

challenging, yet it remains conceptually the same as that discussed here and in [5] as an example. 

Solution processes for these more challenging conditions have been carried out and documented for 

large scale launch vehicle PRA applications concerning planetary NASA missions [6, 7]. 

 

4.3.  Practical Consideration in Uncertainty Analysis for Space System PRAs 

 

A question that deserves consideration, given the mathematical challenges posed by the decomposition 

of a system-level PoF distribution into lower level priors for Bayesian estimation purposes, is the why 

such a process may be given preference over the more traditional one of setting priors up from the 

lowest level at which any estimation is carried out. 

 

In the execution of a space launch vehicle PRA, the top-down choice of process for developing prior 

distributions is primarily suggested by the lack of generic component-level statistical data that reflect 

the high stress conditions (vibration, acoustic, pyro-shock, thermal) of a space launch. The approach 

suggested by existing reliability data compilations or formulations (such as MIL-HDBK-217, the more 

recent "217-Plus, and NPRD-95) is to apply multiplier factors to failure rate and PoF data compiled 

for components operating in conditions without the stress factors mentioned above. The lack of 

validation for these factors and the large discrepancies between the factors suggested by different 

sources for the various classes of components that are of interest, however, give reason to doubt the 

validity and accuracy of the outcomes of this approach.  When applied in the past, in fact, approaches 

following this route typically resulted in launch vehicle reliability predictions that were unrealistically 

high. I.e., when compared with the launch vehicle system record at the end of a sufficiently high 

number of actual launches, the PoF initially predicted by following such a kind of approach would be 

systematically underestimated by as much as an order of magnitude or more.  

 

Considering the above, some launch vehicle PRA practitioners have concluded that it would be more 

reasonable to start the prior distribution setup process from the assessment of ranges of reliability for 

entire launch vehicle systems, which, being based on generic but well established knowledge of actual 

launch mission outcomes, would be more defensible than processes based on data compilations of 

dubious applicability to space launch conditions. From the launch vehicle system top level one would 

then proceed, using considerations of relative ratios of failure rates or PoFs between different launch 

vehicle subsystems and major component, to the definition of prior distributions at progressively lower 

levels of indenture. The considerations and discussion carried out above in Sections 3.1, 4.1 and 4.2 

are directly relevant to this alternative process of defining Bayesian priors. 

 

5.  ALTERNATIVE REPRESENTATION OF EPISTEMIC UNCERTAINTY 
 

Much discussion can be found in the literature on the nature and proper treatment of epistemic and 

aleatory uncertainty. Refs. [4, 8-10] provide a sample of these discussions, and [10] offers an 

exhaustive bibliography on the subject.  Epistemic uncertainty is commonly referred to as arising from 

lack of knowledge, while aleatory uncertainty is considered as originating from the intrinsic variability 

of some physical or other type of process, such as in the toss of a die. At the philosophical level it may 

be argued that aleatory uncertainty is also the result of lack of knowledge, as after all if one could 

exactly know and represent the impulse imparted to the die and all the boundary conditions for the 

bounces that follow, one may in theory be able to predict the outcome of each toss. However, the 

distinction is well established and accepted in the PRA community. In the practical terms of interest in 

the PRA context, epistemic uncertainty, unlike aleatory, typically refers to situations where the 

unknown parameter or variable is not really changing from case to case in the theoretical set of cases 
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of interest for a specific assessment. Rather, it may have a very specific constant value, but that value 

is unknown within a certain range of uncertainty.  

 

Based on the arguments that we have tried to summarize in this paper, some authors [4, 9] have argued 

that the probabilistic representation of epistemic, i.e. "lack of knowledge", uncertainty is inappropriate 

and leads to under-estimation of the true range of uncertainty when probabilistically propagated up the 

logic structures of hierarchically arranged logic-probabilistic models, such as those routinely used in 

PRA. To counter this, these authors have proposed alternative methods of epistemic uncertainty 

representations and propagation within a system model, such as "interval analysis" [4] and Dempster-

Schafer evidence theory [9, 10]. Both Refs. [4] and [9] present examples of propagation and 

presentation of both aleatory and epistemic uncertainty within a given assessment, using separate 

frameworks and techniques for each. 

 

Aside from other types of considerations that have been presented in the literature debate on the 

probabilistic versus non probabilistic representation of uncertainty, the one that appears to perhaps 

have greater relevance in a practical sense is the distinction between: 

a) uncertain quantities with true full wide variability within a given range; 

b) uncertain quantities which are believed to have an unknown fixed value (or unknown narrow 

range of variability) within a wide "ignorance range." 

The above could be used as a working level criterion for the classification of aleatory versus epistemic 

uncertainty. Regardless of whether this is 100% valid at the conceptual and philosophical level, if the 

above distinction is al least viewed as a valid means of categorizing the large majority of uncertain 

parameters that appear in a typical risk assessment, then it can be argued that the application of 

probabilistic mathematical models and rules to represent uncertainty relative to quantities of type a) 

seems to be both justified and defensible. Equally justified, however, may be some of the doubts and 

questions cast against the use of the same approach to represent, and carry through a complex logic-

mathematical model, the uncertainty relative to quantities of type b).  

To see why the difference between the two situations depicted above may possibly affect the 

legitimacy of a purely probabilistic view for both cases, we may in fact visualize a theoretical 

experiment, in which it were possible to repeatedly sample variables of the two types. In such an 

experiment the sampled values of the type a) variables would indeed be varying across the respective 

wide variability ranges according to same specific form of distribution. Each of the type b) variables, 

however, would have essentially the same value appear over and over in each of the sampling tests, 

although this essentially fixed value would be somewhere within the initially identified wide range of 

possible values. The implication is that any dependent variable produced by the combination of type a) 

independent variables would indeed be distributed according to the probabilistic-combinatorial laws 

governing the independent variables, but any dependent variable produced by the combination of type 

b) independent variables would instead simply assume a fixed value, somewhere within a range that 

could be pre-identified by means of interval-analysis from the initially identified ranges of the 

independent variables.  Essentially based on this observation, Ref.[4] proposes a means of combining 

probabilistic (for aleatory) and interval (for epistemic) representation of uncertainty. Unfortunately 

such a method appears to be practically viable only for relatively simple logic-probabilistic system 

models and not scalable to the very complex PRA models that are common in today's practical 

contexts. 

 

6.  CLOSING OBSERVATIONS AND COMMENTS 
 

This paper has discussed a set of issues relative to the representation and handling of uncertainty 

within the practical objectives of a probabilistic risk assessment. Some of these issues have been 

previously been discussed in the literature, but further discussion in the PRA technical community of 

their conceptual and practical relation to the overall problem of effective representation of uncertainty 

in PRA may be beneficial.   
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At the present time the use of Bayesian-style state-of-knowledge probability distributions is the 

preferred means of uncertainty representation and handling in large scale PRAs. Aside from any 

conceptual preferences in regard, this type of representation offers without doubt practical advantages, 

as the computational framework to support it and executed it is well established within the software 

tools at the disposal of the PRA technical community. The discussion in this paper shows, however, 

that issues of consistency may arise in the setting of Bayesian prior uncertainty distributions, 

depending on whether the assessor seeks to a bottom-up or top-down representation of his/her prior 

state-of-knowledge concerning the elements of the system being analyzed. It also shows that the 

concerns that have been raised by some experts with regard to the use of Bayesian probability for the 

representation of epistemic uncertainty may still deserve further attention and discussion, as neither 

probabilistic formulations nor the alternative uncertainty representations proposed in the academic 

literature of the more recent years appear yet to provide a widely applicable and practically 

implementable solution to the related issues.  

 

7.  REFERENCES 

 
[1] L. Philipson, “Anomalies in Bayesian launch range safety analysis,” Reliability 

Engineering and System Safety, vol. 49, pp 355-357, (1995).  

[2] L. Philipson, “The Failure of Bayes System Reliability Inference Based on Data with Multi-

level Applicability,” IEEE Transactions on Reliability, vol. 45(1), pp. 66-69, (1996).  

[3] V. Bier, “On the concept of perfect aggregation in Bayesian estimation,” Reliability 

Engineering and System Safety, vol. 46, pp. 271-281, (1994).  

[4] S. Ferson and L. Ginzburg, "Different methods are needed to propagate ignorance and 

variability,"  Reliability Engineering and System Safety, vol. 54, pp. 133-144, (1996). 

[5] S. Guarro and M. Yau, "On the Nature and Practical Handling of the Bayesian Aggregation 

Anomaly," Reliability Engineering and System Safety, vol. 94 (6), pp. 1050-1056, (2009). 

[6] New Horizons Mission, "Atlas V 551 Final SAR Databook, Revision A," (May 2005). 

[7] Mars Science Laboratory Mission, "Safety Analysis Report Databook, Revision B," (February 

2010). 

[8] A. DerKiureghian and O. Ditlevsen, " Aleatory or epistemic? Does it matter?,"  Special 

Workshop on Risk Acceptance and Risk Communication, Stanford University, (March 26-27, 

2007). 

[9] L. Swiler, T. Paez and R. Mayes, " Epistemic Uncertainty Quantification Tutorial," Proceedings 

of the IMAC-XXVII, Society for Experimental Mechanics Inc., Orlando, Florida USA, 

(February 9-12, 2009). 

[10]  E. Zio and N. Pedroni, "Literature review of methods for representing uncertainty," Cahiers de 

la Sécurité Industrielle, vol. 2013-03, Fondation pour une Culture de Sécurité Industrielle, 

Toulouse, France (April 2013) – (Available at http://www.FonCSI.org/fr/).  

 

 

 

 




