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Abstract: This paper presents a new modeling method and computational algorithm for reliability 
inference with dynamic hybrid Bayesian network. It features a component-based algorithm and 
structure to represent complex engineering systems characterized by discrete functional states 
(including degraded states), and models of underlying physics of failure, with continuous variables. 
The methodology is designed to be flexible and intuitive, and scalable from small localized 
functionality to large complex dynamic systems. In System Health Management applications, this 
method introduces a well-defined interface between continuous system component status and discrete 
system functionality within the network model. Markov Chain Monte Carlo (MCMC) inference is 
optimized using pre-computation and dynamic programming for real-time monitoring of system 
health. The scope of this research includes new modeling approach, computation algorithm, and an 
example application for on-line System Health Management. 
Keywords: On-line System Health Management, Dynamic Hybrid Bayesian Network 
 
1.  INTRODUCTION 
 
With increasing complexity of today’s engineering systems that contain various component 
dependencies and degradation behaviors, there has been increasing interest in real-time System Health 
Management (SHM) capability to continuously monitor sensors, software, and hardware components 
for detection and diagnostic of safety-critical systems. The modeling framework should be flexible to 
accommodate the complexity of component dependencies and failure behaviors, such as sequence-
dependent failures, functional dependencies, etc.  
 
Bayesian Networks (BN) [1][2] and their extension for time-series modeling known as Dynamic 
Bayesian Network (DBN) [3][4] have been shown by recent studies to be capable of providing a 
unified framework for system health diagnosis and prognosis [5][6][7]. Bayesian Network has many 
modeling features, such as multi-state variables, noisy gates, dependent failures, and general posterior 
analysis [8][9][10]. It also allows a compact representation of the temporal and functional 
dependencies among system components [11][12].  
 
The main advantage of using BN in system reliability is its simplicity to represent systems and the 
efficiency for obtaining component associations. Another important benefit of BNs is that they enable 
us to integrate information from different sources, including experimental data, historical data, and 
prior expert opinion. This feature is particularly useful for the reliability assessment of fault tolerant 
systems, where failure data from tests and field operations are sparse and obtained from diverse source 
of information. Bayesian networks are particularly well suited to modeling systems that we need to 
monitor, diagnose, and make predictions about, all under the presence of uncertainty. 
 
However, one of the barriers to applying BN to real-world problems is to be able to adequately handle 
the “hybrid models”, which contain both discrete and continuous variables with general static and 
time-dependent failure distributions. Despite the advances in BN researches, the previous applications 
of BNs as mainstream technology for SHM problems remain modest. To date, the BN framework has 
only partially addressed these limitations [13][14][15][16]. The vast majority of BNs used in real 
world applications are either purely discrete or purely continuous. 
 
For hybrid BNs containing mixtures of discrete and continuous nodes with non-Gaussian distributions, 
exact inference becomes computationally intractable [17]. The common approach to handling (non-
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Gaussian) continuous nodes is to discretize them using some pre-defined range and intervals [18]. This 
is cumbersome, error prone and usually inaccurate. 
 
Even though a universal framework for hybrid BN is currently impracticable, a special case algorithm 
can be effective in SHM where a relatively small subset of possible values covers a large proportion of 
all possible values typically encountered. This paper presents a hybrid BN-based methodology for 
component degradation model and efficient algorithms to apply them in on-line health monitoring of 
complex systems. 
 
The focus of this research is to enable probabilistic diagnosis and prognosis of system in real-time by 
optimizing SHM modeling and Markov Chain Monte Carlo inference with pre-computation and 
dynamic programming to reduce the computation time and number of inferences required. Efficient 
computation allows on-line system monitoring and provides on-demand system health inquiry for 
operators to make maintenance decision and to prioritize which part of the system to investigate to 
avoid an accident. 
 
2.  PROPOSED METHODOLOGY AND ALGORITHM 
 
2.1.  Hybrid Bayesian Network 
 
For SHM modeling, it is advantageous and intuitive to consider a hybrid system, typically with the 
continuous variables being modeled as continuous and the system’s functionality probability being 
discrete. 
 

 
 

Figure 1: Overview of different levels in SHM Bayesian Network 
 
The proposed complex system hybrid BN can be separated into 5 levels as shown in Figure 1, 
according to the typical characteristics of the nodes. The BN combines high-level functionality nodes 
with low-level physical of failure nodes. Here are the descriptions of each level:   
 
1. System node: this is the highest level of the BN nodes (it has no children), it represents the state 

of the whole system and usually indicates whether or not the system is working as intended. 
2. Functionality probability nodes: these nodes are designed to be abstract discrete nodes that 

represent various functionalities, which are required for the system to operate. The node can be 
requirement for operation of a single component, or multiple components. 

3. Component status nodes: these are continuous nodes representing states of physical components 
susceptible to specific failure mechanisms in the system. These values should be measurable 
directly or indirectly, and they are expected to degrade over the lives of the components. 
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4. Factor nodes: these nodes contribute to the degradation of the components. They can be 
component internal factors related to material properties or physical characters, or they can be 
external factors such as environmental stresses or temperature.  

5. Parameter nodes: these nodes are hyper-parameters that describe probability distributions of the 
factors. 

 
It is to be noted that each level of the HBN could by itself be represented as a complex BN model. It 
can contain a combination of different layers of nodes that have the same type. 
 
Reliability concerns arise when some critically important materials or devices degrade with time. Let 
C represent a critically important material/device parameter. This parameter degrades over the life of 
the component. The value itself can either increase (threshold voltage of a semiconductor device, 
increase in leakage of a capacitor, increase in resistance of a conductor) or decrease (decrease of 
pressure in a vessel, decrease of spacing between mechanical components, decrease in lubricating 
properties of a fluid). Figure 2 presents the SHM BN at a specific time, t. The shaded areas show 
continuous nodes that are related to each component. 
 

 
 

Figure 2: SHM Bayesian network at specific time t. 
 
A Taylor expansion about t=0 produces the Maclaurin Series, assuming that C changes monotonically 
and relatively slowly over the lifetime of the material/device: 
 

 𝐶 𝑡 = 𝐶!!! +
𝜕𝐶
𝜕𝑡 !!!

𝑡 +
1
2

𝜕!𝐶
𝜕𝑡! !!!

𝑡! +⋯ (1) 

 
By assuming that the higher order terms in the expansion can be approximated by simply modeling 
degradation of component/device parameter C with a power-law equation: 
 

 𝐶 = 𝐶! 1 ± 𝐴! 𝐹!,… ,𝐹! 𝑡!  (2) 
 
where, 𝐶! is the value of 𝐶 at 𝑡 = 0. Summation (+) is used when the parameter C increases with time, 
while subtraction (-) is used when the parameter C decreases with time. Parameter 𝐴! is generally 
material/microstructure dependent. It is not only a function of material variations, but also a function 
of other factors, such electrical, thermal, mechanical and chemical environments to which the device is 
exposed. The parameter 𝑚  and other parameters are considered to be constant for the 
component/device. Considering a BN at a time slice of a given system, 𝑡 indicates the current life of 
the component/device.  
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For a component/device to fail, the amount of degradation must reach a critical value, 𝐶!"#$. Therefore, 
the time to failure, 𝑇!"#$%&', is then: 
 

 𝑇!"#$%&' =
1

±𝐴! 𝐹!,… ,𝐹!
𝐶!"#$ − 𝐶!

𝐶!

!/!
 (3) 

 
Since the component status and their parents are continuous nodes, and the functionality probability 
nodes are discrete, the interface between these different types of nodes becomes critical. In general 
hybrid BN when continuous nodes have discrete parents, there are simple conditional inference 
techniques such as in conditional linear Gaussian (CLG) model. Difficulty arises when discrete nodes 
have continuous parents, which is the case for our SHM network. However in this case, even though 
discrete functionality probability nodes have continuous component status nodes, they are related by 
degradation thresholds. 
 
Discrete functionality nodes can contain more than 2 states with thresholds between the transitions of 
one state to the other. Let the threshold value between functionality state 𝑖 and 𝑗 be 𝐶!!,!/!. The most 
common case would be state 𝑖 denotes the component function, and state j denotes the component 
does not function. Let 𝑃! be the probability of functionality being in state 𝑖. The probability 𝑃! is then 
the probability that the component status 𝐶 is lower than the threshold value 𝐶!!,!/!. Figure 3 shows a 
typical component exponential degradation function and the overlap of probability distributions of 𝐶 
and 𝐶!!,!/!.  
 

 
Figure 3: Overlap of probability distribution of component status and its threshold. 

 
Let a functionality node has 𝑛 states, the probabilities of being in the states are 𝑃!,… ,𝑃!. Assume the 
state of the functionality node changes monotonically according to the component degradation status: 
 

 𝐶!!,!!!/! < 𝐶!!,!/!!!  for 𝑖 = 2,… , 𝑛 − 1 (4) 
Therefore, 

 𝑃! = 𝑝𝑟𝑜𝑏 𝐶!!,!!!/! < 𝐶 < 𝐶!!,!/!!!  (5) 
 
Analytically, 𝑃! can be calculated from the following convolution equation: 
 

 𝑃! = 𝑝 𝐶!!,!!!/! ∙ 𝑝 𝐶 ∙ 𝑝 𝐶!!,!/!!! 𝑑𝐶𝑑𝐶!!,!/!!!𝑑𝐶!!,!!!/!

!!!,!/!!!

!!!,!!!/!

!

!!!,!!!/!

!!!,!/!!!

!!

 (6) 
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If there are 𝑘 component status parameters contribute to this functionality then the state of the 
functionality node conditionally depends on comparison between the status of each component and its 
threshold values. 
 
 𝑃!!…!! = 𝑝𝑟𝑜𝑏 𝐶!!!,!!!!/!! < 𝐶! < 𝐶!!!,!!/!!!!  ,… ,𝐶!!!,!!!!/!! < 𝐶! < 𝐶!!!,!!/!!!!  (7) 
 
2.2.  Dynamic Bayesian Network 
 
Dynamic Bayesian Network (DBN) is a Bayesian network that includes a temporal dimension. This 
new dimension is managed by time-indexed random value 𝑡 to indicate time stage of the nodes. A set 
of nodes at certain stage contains random variables relative to time slice 𝑡. An arc that links two 
variables belonging to different time slices represents a temporal probabilistic dependence between 
these variables. Variables can be modeled to have impact on the future distribution of the other 
variables. These impacts are defined as transition probabilities between the stats of variables at time 
step 𝑡 and 𝑡 + ∆𝑡. 
 
A DBN describes the joint distribution of a set of variables θ. This is a complex distribution, but may 
be simplified by using the Markov assumption. The Markov assumption requires only the present state 
of the variables θt to estimate θt+1, i.e. p(θt+1|θ0,...,θt) = p(θt+1|θt) where p indicates a probability density 
function and bold letters indicate a vector quantity. Additionally, the process is assumed to be 
stationary, meaning that p(θt+1|θt) is independent of t. 
 
For SHM Bayesian network, the main variables that change between time slices are component 
parameters. Components degrades over time, therefore, the status of components at a certain time slice 
depend on their status at the previous time slice and the factors affecting the degradation processes 
during that transition. 

 𝑝 𝐶! = 𝑝 𝐶|𝐶!!∆! , 𝐹!!,… ,𝐹!!  (8) 
 
Given that 𝐹!!  is the average value of factor 𝑖  between time slice 𝑡 − ∆𝑡  and 𝑡 . ∆𝑡  should be set 
according to the system under interest and how often the parameters can be observed, such as 
frequency of sensor signals. The benefit of continuous monitoring and inferences of variable that 
cannot be observed directly is to detect anomaly in the system before failure actually occur. Figure 4 
shows a two-time-slice representation of a dynamic SHM Bayesian network.  
 

 
 

Figure 4: Two-time-slice representation of a dynamic SHM Bayesian network 
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At any point in time during system operation, any value of variables in the system can be derived by 
probabilistic inference to compare with its expected value to see if the probability is still in the 
acceptable range and the system as a whole is working as intended. With continuous monitoring, the 
trajectory of the degradation processes can be estimated form our knowledge of the health of the 
system. We can then use this information to estimate remaining useful life (RUL) of components and 
plan maintenance accordingly. 
 
2.3.  Inference 
 
Bayesian network is a complete model for the variables and their relationships. Therefore, it can be 
used to answer probabilistic queries about them. The main application is to use BN to realize updated 
knowledge of the state of a subset of variables when other variables (the evidence variables) are 
observed.  
 
Bayes’ rule with continuous variables: 

 𝑝 𝜃|𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃
𝑑𝜃  𝑝(𝐷|𝜃)𝑝 𝜃

 (9) 

 
Let 𝜃  be a parameter value and 𝐷  is data value of the evidence, 𝑝 𝜃|𝐷  is then the posterior 
probability of getting parameter value 𝜃 when data value 𝐷 is presented. 
 
In real world SHM applications, there are various types of parameter distributions, which make it 
difficult to calculate full marginal distributions analytically. Therefore, sampling techniques can be 
used to approximate the distributions instead. Expected values of a distribution can be estimated as 
follow: 

 𝐸 𝑝 𝜃|𝐷 ≈
1
𝑁

𝑝 𝜃(!)|𝐷
!

!!!

 (10) 

 
Where 𝜃(!),… , 𝜃(!) are the sample values of parameter 𝜃. 
 
There are many ways to sample these values, the key idea is to let 𝜃 values be points in state space and 
find a way to walk around so that the likelihood of visiting any point 𝜃 is proportional to 𝑝 𝜃 . 
Therefore, the sampler will spend more time sampling from the distribution where the probability is 
high, and spending less time sampling from where the probability is low. This can be achieved by 
using Markov chain Monte Carlo (MCMC) algorithm [19][20].  
 
The procedure for updating the belief about the system state as new information becomes available is 
called Bayesian recursive filtering. 
 

 𝑝 𝜃!|𝐷!:! =
𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!
𝑑𝜃  𝑝 𝐷! 𝜃! 𝑝 𝜃!|𝐷!:!!!

 (11) 

 
Under certain assumptions, such as when the system is linear Gaussian, the belief state will be of a 
known parametric form and computationally efficient solutions to the filtering problem (e.g. Kalman 
filter, extended Kalman filter, unscented Kalman filter) are available. Outside such assumptions, a 
computationally feasible method for inference in the DBN is particle filtering, a form of sequential 
Monte Carlo based on Bayesian recursive filtering. Common particle filtering methods are based on 
sequential importance sampling (SIS) [21]. 
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2.4.  Computational Algorithm for On-line SHM 
 
In highly complex systems, MCMC algorithm requires large amount of computational time for 
inference in hybrid DBN. The computation time grows exponentially with each additional layer of 
network and becomes infeasible with large number nodes. The computation time makes it impossible 
for on-line health monitoring of complex systems. To solve this problem, special case algorithm for 
SHM is introduced to reduce the number of computations and the amount of time required for each 
computation. 
 
One of the main characteristics of SHM in contrast of other applications is that during a normal 
operation, the environmental factors that affect component degradation process are expected to be 
roughly the same and predictable. Therefore, instead of performing Bayesian updating at a specific 
time interval, it only needs to be done when a factor value changes outside of expected range. 
 

 𝑓! − 𝑓!!! > 𝜖! (12) 
 
Where 𝜖! depends on the sensitivity of component status due to the change in value of that factor. 
Please note that this is possible because component status is a function of time. Therefore, the 
degradation of a component between time period ti to tj where the change in factor value is less than 𝜖! 
will take a normal distribution 𝒩 𝜇! ,𝜎!  for Δ𝑡 = 𝑡! − 𝑡!. 
 
Since the values are predicted to be in certain ranges, it is possible to perform pre-computation for all 
combinations of possible values in the ranges before the system is in operation. The results are then 
stored in a database, such that they can be pulled quickly to approximate the inferences in real-time. 
More computation should be conducted and more results should be added to the database as the health 
of the system is being monitored such that the database will cover all the possible computations that 
may be needed in the future. 
 
With continuous range of parameter values, it is impossible to pre-compute every possible outcome. 
The goal of pre-computation is to cover enough values of observable parameters, so that the values of 
unobservable parameters can be accurately interpolated from the results. There are two factors in 
considering the selection of possible values.  
 
First is the range of observable parameters after a time period ∆t. The selections should cover full 
range of possible values. There should be at least one selected value at lower bound and one selected 
value at upper bound. The common range is from 5th percentile to 95th percentile, or more accurately 
0.5th percentile to 99.5th percentile.  
 
Second is the number of selections within the bound: the higher the number of selections, the more 
accurate results from interpolation will be. The density of selections should be proportional to the 
probabilistic density of the observable parameters. For example, if 19 values should be selected, then 
they should be the values at 5th, 10th, … , 90th, 95th percentiles. Therefore, for a given measurement 
interval ∆t, we can estimate the set of possible values and use those values to pre-computed possible 
outcomes. 
 
There are two different types of observable parameters. The first one is the parameters that change 
over time. This is usually the case for component status parameters. For pre-computation to be 
feasible, the changes must be predictable. For a component status parameter, the change in value can 
be computed from its degradation equation for a given ∆𝑡. Figure 5 shows example expected value, 5th 
percentile, and 95th percentile values. 
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Figure 5: Example component status degradation with 5th percentile, and 95th percentile values. 

 
For this case, the range of possible values grows over time. Therefore, the number of selection should 
increase proportionally with the range to keep the interval between selected values the same, thus, 
keep the accuracy of interpolation constant. For example, if there is N number of selections per 
variable, the selections are: 
 

 𝐶! = 𝐶!!"#!! ,𝐶!!"#!!"! ,𝐶!!"#!!!"! ,… 𝐶!!!"!!!  (13) 

 𝛿 =   
𝑝!!"! − 𝑝!"#
𝑁!"#"$%&'(! − 1

 (14) 

 
The other type of observable parameters is constant parameters. These parameters are usually 
Gaussian distributed. For this case, the range always stay constant, therefore, the selections remain the 
same throughout the life of the component. 
 
If the observed values are always in the predicted range, the accuracy of the results depends upon the 
number of selections for pre-computation. The number of selections is the number of selections at 
each time-slice multiplies be the number of measurement intervals. The number of pre-computations is 
then the number selections for each observable times the number of observables parameters.  
 

 𝑁!"#!!"#$%&'&(") = 𝑁!"#"$%&'(!,!,!!(!∆!)

!

!!!

!!/∆!

!!!

 (15) 

 
Where 𝑁!"#!"#$%&',!,! is the number of selections of observable parameter 𝑖 at time 𝑡. 𝑛 is the number of 
observable parameters. 𝑇! is the component life. The total computation time then can be estimated. 
 

 𝑇!"#!!"#$%&'&(") = 𝑁!!"!!"#$%&'&(") ∙ 𝑇!"#$!%#!!"#!!"#$%&'&(") (16) 
 
For MCMC computation, the average computation time is proportional to the number iterations. The 
higher the number of iterations, the higher accuracy of the result will be. Therefore, there is a trade-off 
between computation time and accuracy. For pre-computation, the decision between higher number of 
value selections or higher number of iteration per computation must be made.  
 
One advantage of the isolation among component sub-tree is that time intervals do not have to be 
uniform for all components. Measurement/inspection intervals can be based on the rate of component 
degradation and possible change to component parameters. They can also be dynamically changed 
during the life a component depending on its status. For example there can be less frequency of 
measurements during the early life of a component due to less probability of failure. Then increase the 
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frequency when the component approaches the end of life. The time interval between measurements, 
∆𝑡, should then be inverse proportional to the amount of change of the parameter 𝐶, ∆𝑡 ∝ 1/∆𝐶. Thus, 
the sampling rate around a certain evidence value will be proportional to the probability that the 
evidence value could happen and how much different in values to the possible values around it at 
certain period of time.  
 
Dynamic programming is a method for solving complex problems by breaking them down into 
simpler subproblems. It is applicable to problems exhibiting the properties of overlapping 
subproblems and optimal substructure. When applicable, the method takes far less time than naive 
methods that don't take advantage of the subproblem overlap. In general, to solve a given problem, we 
need to solve different parts of the problem (subproblems), then combine the solutions of the 
subproblems to reach an overall solution. Often when using a more naive method, many of the 
subproblems are generated and solved many times. The dynamic programming approach seeks to 
solve each subproblem only once, thus reducing the number of computations: once the solution to a 
given subproblem has been computed, it is stored the next time the same solution is needed, it is 
simply looked up. This approach is especially useful when the number of repeating subproblems 
grows exponentially as a function of the size of the input. 
 
Using dynamic programming can reduce the precomputation time for Bayesian Network inference 
drastically. Instead of computing full inferences for each set of evidence values, dynamic 
programming algorithm retain marginal results that can be reused with similar set of evidence values.. 
There are three steps for the algorithm: 
 

1. Use logic-sampling algorithm and degradation model to generate all possible evidence values 
according to its probability of occurring. Not all evidence nodes have to be instantiated for 
each case, only the evidence nodes that are required for observing nodes are instantiated. 

2. Check and construct a cache by comparing each generated case to those already in the cache. 
If the case is found to be new, this algorithm determines, the joint probability of the case’s 
evidence using the algorithm in the third step. 

3. The marginal posterior-probability distributions over the diagnosis nods are determine, then 
the values of the evidence nodes, the joint probability of the evidence set, and the marginal 
posterior-probability distributions for the diagnosis node are stored in the cache. 

 
Figure 6 shows two example cases where dynamic programming can reduce the number of 
computation. The first case is when nodes have the same set of parent nodes, thus the same sets of 
possible marginal probability distributions for discrete nodes. The second case is when continuous 
parameters have several trajectories that can reach the same values after some period of time. In 
addition, if more computations are needed during an operation in the event where evidence values 
reaches the bound of expected values, dynamic programming provide a set of marginal results that can 
be used for possible faster inference of values outside the pre-computed cache. 
 

	  
Figure 6: Example cases where dynamic programming reduces number of computations 

 
Since both deterministic and approximate inference were found to be NP-hard [22][23], the 
computation complexity for both discrete functionality and continuous component degradation model 
are exponential in the network’s treewidth. Figure 7 shows a plot presenting differences between pre-
computation time with and without dynamic programming. 
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Figure 7: Inference pre-computation time with and without dynamic programming. 

 
3.  EXAMPLE APPLICATION 
 
Electromigration (EM) in advanced integrated circuits (ICs) was considered to demonstrate the 
proposed methodology. For both Al-based and Cu-based metallization, EM has historically been a 
significant reliability concern. 
 
The model generally used to describe EM time-to-failure takes the form: 
 

 𝑇𝐹 =   𝐵!   𝐽(!) − 𝐽!"#$
(!)   

!!
exp

𝑄
𝐾!𝑇

, (17) 

 
where: 𝑇𝐹 is the component time to failure. 𝐵! is a process/material-dependent coefficient. 𝐽(!) is the 
electron current density. 𝐽!"!"

(!)  is a critical (threshold) current density which must be exceeded before 
significant EM is expected. 𝑛 is the current density exponent. 𝑄 is the activation energy. 
 
Using degradation model of component/device parameter C with the power-law equation: 
 

 𝐶 = 𝐶! 1 − 𝐴!   𝐽(!),𝑇 𝑡!  (18) 
 
We can derive at the following relationship: 
 

 𝐶 = 𝐶! 1 − 𝐴! ∙   𝐽(!) − 𝐽!"#$
(!)   

!
∙ exp

−𝑄
𝐾!𝑇

𝑡!  (19) 

 
Since both current density 𝐽(!) and temperature 𝑇 are expected to be normally distributed between 
time t-1 to t,  

 𝐽 ! = 𝒩 𝜇! ,𝜎!  
𝑇 = 𝒩 𝜇! ,𝜎!  

(20) 

 
In the context of simple health monitoring in this example, 𝐴!,  𝑄, 𝑟, and 𝑚 are considered to be 
constant parameters representing material/device internal factors. These parameters can also be 
modeled with probabilistic distributions. The BN model of a component affected by EM is shown in 
Figure 8. 
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Figure 8: BN of a component affected by EM. 

 
Consider an Al-alloy under high temperature operation, with current density J = 2×106 A/cm2 and at a 
metal temperature T = 200 °C. Assuming an activation energy of Q = 0.8 eV and the current density 
exponent of n = 2. Using conservative design approach, assume Jcrit = 0. Consider the data set shown 
in Figure 9 of 𝐽(!) and 𝑇 during an operation. 
 

 
Figure 9: Current density and temperature data set 

 
The data is retrieved once per minute during one hour of operation. In traditional Bayesian updating 
method, a calculation is required at each time step, which means 60 inferences have to be performed. 
With the proposed algorithm, only 4 inferences are needed when the values of current density and 
temperature changes out of 𝜖! range. Approximate inference of component status is available almost 
instantly with pre-computation of Ct at t = 1,…,60, with the range of J between 1.8×106 A/cm2 to 
2.2×106 A/cm2, and T between 90°C to 120°C. Figure 10 shows an example plot of component status 
degradation under electromigration vs. time at different current density and temperature, including 
from the data set. 

 
Figure 10: Plot of component status under electromigration vs. time at different current density and 

temperature, including from the data set 
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4.  CONCLUSION 
 
This research presents new modeling approach, computational algorithms, and an example application 
for on-line System Health Management. New method of using dynamic hybrid Bayesian Network 
were introduced with component-based algorithm and structure to represent complex engineering 
systems in a way that it allows accurate representation of underlying physics of failure by using 
empirical degradation model with continuous variables.  
 
With dynamic hybrid Bayesian Network model requiring Markov Chain Monte Carlo for probabilistic 
inference, this paper develops computational algorithms that enables monitoring and diagnosing 
complex systems in real-time. The algorithms use the characteristics of System Health Management 
applications to allow reduction of number of inference required and reduce the calculation time by the 
means of pre-computation and dynamic programming.  
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