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Abstract: Testing of components with common cause failures presents a challenge to a realistic 

analysis of failure probabilities. In reality, the most commonly used testing scheme is staggered testing. 

Common Cause Failure (CCF) models in Probabilistic Safety Assessment (PSA) studies often assume 

a sequential testing scheme. This might be overly conservative if the actual testing scheme is staggered. 

Some software tools, e.g., RiskSpectrum, offer time dependent analysis where one can model testing 

of components in time explicitly. This paper deals with effects of different testing schemes on the 

quantification of CCF events in time dependent analysis. 

 

Determining which formulae shall be used by software tools in time dependent analysis requires an in-

depth understanding of how to model effects of tests on the common cause parts of failures. We 

analyze assumptions which lie behind different ways of modeling tests of common cause failure 

events.  
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1.  INTRODUCTION 
 

Testing of components with common cause failures presents a challenge to a realistic analysis of 

failure probabilities. In reality, the most commonly used testing scheme is staggered testing. Common 

Cause Failure (CCF) models in Probabilistic Safety Assessment (PSA) studies often assume a 

sequential testing scheme. This might be overly conservative if the actual testing scheme is staggered.  

Some software tools, e.g., RiskSpectrum, offer a mean probability calculation and also time dependent 

analysis where one can model testing of components in time explicitly.  

 

Quantification of common cause failure events depends on the chosen testing scheme, both in mean 

probability calculations and in a time dependent analysis. We focus mainly on the alpha model for 

common cause failure events in this paper. NUREG/CR-5485 [2] presents formulae for mean value 

quantification of common cause failure events with the alpha model under assumption of both 

sequential and staggered testing schemes. We discuss the following issue: How does an explicit 

modeling of a testing scheme in a time dependent analysis relate to the mean value estimates obtained 

by formulae from NUREG/CR-5485? This requires an in-depth understanding of how to model effects 

of tests on the common cause parts of failures.  

 

This leads to more detailed questions about the analysis algorithm. Which formulae shall be used by 

software tools in a time dependent analysis? Under which assumptions are they correct? It is of great 

importance to understand the underlying assumptions when interpreting the numerical results in order 

to avoid taking an unjustified credit for top frequency decrease with staggered testing [3]. 

 

The main topic of this paper can be generalized to the following issue. The simplified models for 

staggering only consider staggering within one CCF group, but this is still a significant simplification 

since testing of important systems is often also staggered. Time dependent analyses provide a better 

solution, since these can also take staggering between different systems into account.   

 

The paper is organized as follows. First, we present the background for common cause failure 

modeling and tested basic events. Then we formulate the main problem in Section 3. Section 4 shows 
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the relation between time dependent analysis and mean value calculations. Section 5 discusses 

assumptions on which both methods are based. Finally, we conclude the paper. 

 

2. BACKGROUND 
 

The classical approach in PSAs assumes that basic failures modeled by basic events are independent 

of each other. Dependent failures are then either modeled explicitly by adding the root cause into the 

model as a new basic event or by defining so called common cause failures. Since its introduction in 

the sixties, common cause failure analysis became an integral part of PSA studies, with a mature 

methodology described in many standards and procedures [1,2,5].  

 

2.1 Parametric models 

 

Common cause failures are defined by parametric models. This means that we identify groups of basic 

events that might fail together as a result of a common cause. Then we choose a model and assign 

values to model parameters. The model together with the parameter values already define how to 

complete the fault tree model by so-called common cause failure events, and also defines how to 

quantify them. Fault tree analysis results will then reflect the contribution of common cause failures to 

the top failure. In fact, common cause failures often significantly contribute to core damage frequency. 

 

Basic events included in the same common cause failure group have to be identical. In this paper, we 

assume that they have the same reliability model with the same reliability parameters. 

 

Parametric models for common cause failure modeling divide into shock and non-shock models. 

Shock models assume that common cause failures result from the impact of an external shock which 

occurs with a given frequency. Non-shock models do not have any such assumption and directly 

determine probabilities of common cause failure events.  

 

The most commonly used non-shock parametric models include the Beta Factor, the Alpha Factor, and 

the Multiple Greek Letters (MGL) model. The Beta Factor model is the simplest one, distinguishing 

only between independent failures and a common failure of all basic events from the common cause 

failure group. This model requires only one parameter value. The Alpha Factor and MGL models offer 

an extension of this model to all combinations of common cause failures. An advantage of the Alpha 

Factor model over the MGL model is that its parameters can be directly estimated from the failure data 

obtained from tests. This paper focuses on the Alpha Factor model, since it is recommended in, e.g., 

[2,5], and since other models can be transformed to it.  

 

2.2 Alpha Factor model 

 

The Alpha Factor model [7] for a group of m basic events is determined by m parameters denoted by 

  ,   , …,   . Each parameter    is the fraction of failures that occur together in groups of k 

components in total failures. In other words, it is a "probability that when a common cause basic event 

occurs in a common cause group of size m, it involves failure of k components" [2]. Let us by   
  

denote probability of a common cause failure event representing that k components from a common 

cause failure group with m components fail because of a common cause involving these k components. 

Since components in a common cause failure group are assumed to be equivalent, this probability is 

well-defined. Now we can define    formally by 
 

 

    
 
 
 
   

 

  
 
 
   

  
   

 (1)  

 

We assume that the common cause failure events are mutually exclusive to each other (i.e., a common 

cause failure of components A and B models a situation where A and B fail together and components 
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C and D from the same common cause failure group function correctly) and that they add up together 

with independent failures to the original failure probabilities of the basic events included in the 

common cause failure group. Formally, 

 

 
      

   
   

   
 

 

   
 (2)  

 

Quantification of common cause failure events based on the alpha parameters and the independent 

basic event probability is derived from the two basic equations above. The probability of   
  is 

determined by 
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where 

 
        

 

   
 (4)  

 

 

Complete derivation is described in, e.g., [2], Appendix A. 

 

So far, we did not consider any time dependent behavior of basic events. Equation 3 above is valid for 

mean value calculations. Now, let us consider basic events representing stand-by components which 

are periodically tested. Such basic events are defined in [4] by the following reliability model. This 

model assumes an exponential distribution for the failure process (constant failure rate λ), a constant 

fixed test interval (TI) with optional different time to first test (TF). To simplify the understanding of 

this model, we will first present it with only the failure rate and test interval parameters. The 

unavailability in this case is given by: 

 

                                           (5)  

 

This model results in the classical saw-tooth curve for the unavailability (Figure 1). If a TF (time to 

first test) parameter is given, the model is identical except that the time points for the tests are "offset" 

by the value TF, i.e. the test time points are Ti = 0, TF, TF + TI, TF + 2TI, … 

 

Figure 1. Graph of the unavailability over time of a tested basic event. 

 
 

The mean unavailability Qmean is obtained by integrating the unavailability Q(t) over a complete test 

cycle: 

 

 
      

 

  
       

  

 

   
 

   
             (6)  

 

We assume that a repair occurs directly after a test if the component is failed at the test. The 

unavailability of the component immediately before a test, Q(TI), is, in other words, the probability 

that a repair is needed after the test.  
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Clearly, testing influences the mean failure probability of such basic events. If these basic events form 

a common cause failure group then they are implicitly divided into several other basic events 

modeling common cause failures. Testing of such events is determined by testing of all components 

which are included in this common cause failure. As long as all components are tested synchronously 

at the same time points, this does not alter assumptions for the mean value formula above. When we 

test components at different time points then, from the logic of common cause failure modeling, each 

successful test also demonstrates that there is no common cause failure involving the tested 

component. This means that testing one component affects other components. 

 

Testing components from one common cause failure group at different time points evenly spread over 

the testing calendar is called staggered testing. The test procedure works as follows. If a tested 

component functions normally then we wait until the next test time point where another component is 

tested. If a failure is observed during a test of one component then all other components from the same 

common cause failure group are tested as well. All malfunctioning components are repaired. 

 

Our aim is to describe different ways of taking staggered testing into account both in mean value and 

time dependent analysis. 

 

3. PROBLEM STATEMENT 
 

We present a formula from [2] for the Alpha Factor model that takes staggered testing into account. 

Then we introduce a way to perform time dependent analysis. Finally, we state the problem as 

establishing a relation between the two approaches.  

 

3.1. Mean Value Calculation with Staggered Testing 

 

Equation 3 does not explicitly depend on a testing scheme, because we did not need to make any 

assumptions about it in Equations 1 and 2. However, values of alpha parameters and the total basic 

event probability might depend on the actual testing scheme. [2] presents a formula for the Alpha 

Factor model with staggered testing: 

 

 
  

   
 

 
   
   

 
     (7)  

 

To obtain this, we have to use the relation between estimators for   
  in both schemes. We have that  

 

   
      

     
     

  (8)  

 

and if we replace the values from non-staggered testing by the right hand side in the Equation 1 and 

leave Equation 2 then we obtain Formula 7. Since this derivation is not a part of [2], we show it here. 

Recall a simple relation between binomial coefficients. 

  

  
 
 
   

 

 
 
   
   

  (9)  

 

Applying Equation 8 on Equation 1 together with Equation 9 gives us 

 

 

    
 
 
 
    

 

  
 
 
    

  
   

 
 
   
   

    
 

  
   
   

    
  

   

 
 
   
   

   
 

  
   
   

   
  

   

 (10)  

 

Now we can substitute the denominator according to Equation 2. 
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 (11)  

 

From here we obtain Formula 7. 

 

3.2. Time dependent Analysis 

 

Time dependent analysis in RiskSpectrum is based on an assumption that alpha factors are the same 

over time. Component failure probabilities are established according to Formula 5 and it is always the 

latest tested component that determines probabilities of common cause failure events containing this 

component. 

 

Common cause failure modeling works in the following way. We split the original event(s) into 

several new ones. Each new event:  

 Represents failure of one or more events from the common cause failure group. 

 Contains reliability parameters from the original event. 

 Has its failure probability (unavailability) at a given time multiplied by a factor obtained from 

alpha parameters depending on its multiplicity according to Formula 3. 

 

After this, each new event represents a clearly defined physical event (e.g., components A and B fail 

simultaneously because of a common cause failure) and behaves as an independent event. Its failure 

probability at a given time is independent of the probability of other common cause failure events at 

this time point. It is determined only by its parameters, alpha parameters, and the time point, which in 

turn determines the time point of the last test. An event representing a simultaneous failure of several 

components is tested each time one of these components is tested. If this tested component works then 

it means that the simultaneous failure of these components has not happened and therefore its 

probability is equal to zero.  

 

The mean value of top event unavailability is obtained by calculating unavailability at different time 

points (Figure 2), integrating it over time numerically and dividing it by the interval length.  

 

Figure 2. A graph of unavailability over time for an example emergency feed water system. 

 
 

3.3. Final Problem Statement 

 

We shall deal with the following questions in the rest of the paper: 

 Which assumptions lie behind the time dependent analysis in RiskSpectrum? 

 How does this time dependent analysis relate to the staggered mean value formula from 

NUREG/CR-5485? 

 What are the advantages and disadvantages of either approach? 

 

4. RELATING TIME DEPENDENT ANALYSIS AND MEAN VALUE FORMULAE 
 

Recall that failure probability of a common cause failure event at a given time is determined only by 

its parameters, alpha parameters, and the last time point when a component included in this event was 

tested. We call this a perfect testing assumption. Each test excludes the possibility of all common 
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cause failure events including the tested component, leaving other common cause failure event 

probabilities unaffected.  

 

One consequence of this is that probabilities of common cause failure events at a random time point 

might not satisfy Equation 2 for   . First, values   
  are not well-defined anymore. They can be 

different for different common cause failure events with the same multiplicity. Secondly, if we, at a 

specific time point, sum up values of all common cause events including failure of the original 

component then we might get a value smaller than the original value   . For example, in a group with 

two components A and B, if we test B at a time point t then the total failure probability of A decreases, 

because the probability of a common cause failure of A and B is set to zero. 

 

The mean probability value of a common cause failure event in time dependent analysis with 

staggered testing might be up to k times, where k is the event's multiplicity, smaller than its mean 

value with non-staggered testing. There are two reasons why it is not always k times smaller: 

 Tests of this common cause failure might not be evenly distributed over the test interval.  

 For larger lambda values, the probability function over time deviates significantly from a 

linear function. See Figure 3 for an example of both phenomena. 

 

Since the mean value formula does not take exact test time points into account, and the effects of the 

two items above are small if we have small lambda values, we can say that this decrease of mean 

probability for common cause failure events corresponds to dividing the mean value by k. This 

decreases the mean total probability of the component failure (modeled by the original basic event) by 

a factor of   . If we denote the mean failure probability of the component in question under 

assumption of staggered testing by   
   

 and under assumption of non-staggered testing by   
    

 then 

we have that  

 

   
   

    
    

    (12)  

 

All these considerations assume that we use Formula 3 (non-staggered testing) to calculate 

probabilities in the time dependent analysis. On the other hand, using   
   

 or Formula 7 (staggered 

testing) for the time dependent analysis, i.e., to obtain event probabilities at a certain time point, would 

be applying staggered testing on data obtained from staggered testing and it would result in an 

unjustified decrease of failure probability. 

 

Figure 3. Uneven staggered testing of components with failure rate equal to 0.02 

 
 

5. DISCUSSION 
 

In this section we discuss advantages and problems with time dependent analysis of the background of 

Formula 7. 

 

5.1 Perfect Testing Assumption 

 

Time dependent analysis in RiskSpectrum works under the perfect testing assumption. As a result, the 

component failure probability obtained from the time dependent analysis is somewhat lower than the 

original one. For realistic alpha parameters where     (the independent failure) dominates the other 
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parameters, the difference rather small. See Table 1 for some examples of alpha parameters taken from 

[6]. 

 

Table 1: Decrease of Component Failure Probability in Time dependent Analysis with Staggered 

Testing 

            Decrease (%) 

0.9771 1.38E-2 8.09E-3 5.59E-3 4.9 

0.9766 1.49E-2 6.81E-3 1.67E-3 3.3 

0.9636 1.34E-2 1.11E-2 1.13E-2 6.5 

0.9612 2.42E-2 1.07E-2 3.89E-3 5.5 

0.8395 8.33E-2 2.68E-2 4.75E-2 21.7 

 

Time dependent analysis offers multiple advantages over mean value calculations. It gives complete 

flexibility for modeling of staggered testing. We can model different testing schemes, e.g., a two-train 

system with two redundant components in each train where testing of trains is staggered. We test both 

redundant components in a train in one test episode and the other two redundant components from the 

second train in the next test episode. Here, using the Formula 7 for a CCF group of size four might 

lead to underestimating the actual failure probabilities. 

 

The mean probability model for staggering only considers staggering within one CCF group, but this 

is still a significant simplification since testing of important systems is often also staggered. Time 

dependent analyses provide a better solution, since these can also take staggering between different 

systems into account. Therefore, time dependent analysis can serve as a verification tool for designing 

a test scheme. Additionally, it makes time dependent analysis a natural method for on-line risk 

monitors.  

 

Finally, can we use some of the equations above to obtain the same result also in mean value 

calculations? Formula 7 is derived from the unmodified Equation 2 which states that all common 

cause failure probabilities sum up to the original component failure probability. To reconcile this with 

the perfect testing assumption, we have to replace the original component probability by the staggered 

one from Equation 12. This means that we consciously distinguish between mean failure probability of 

a component with non-staggered and with staggered testing and we accept that this probability is 

lower under staggered testing. Formula 7 then gives us the same mean probability values for common 

cause failure events as the time dependent analysis (this follows directly from a comparison between 

Formula 3 and Formula 7 after application of Equation 12). 

 

5.2 Failure Probability Preservation Assumption 

 

In spite of the arguments above, one might argue that the perfect testing assumption is giving us an 

unreasonable risk decrease bonus. By a successful test of a component A, we can exclude the 

possibility that components A and B from the same common cause failure group fail together. If we 

were now in the position to partition the total failure probability for the whole component, maybe we 

would simply assign a bit more to other common cause failure events instead of the currently excluded 

event AB. By this, we would preserve the original total probability also under the staggered testing 

scheme. The effect of this testing scheme would be a different probability partitioning in favor of 

common cause failure events with lower multiplicities. This corresponds to a modification of the alpha 

parameters.  

 

This is a conservative way of accounting for staggered testing. It is skeptical to our knowledge about 

common cause failures and does not want to take the full credit for testing of common cause failure 

events. Probability of a common cause failure event modeling a dependent failure of k components 

with staggered testing will be higher than the probability of the same event with non-staggered testing 
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divided by k. This approach might still lead to a decrease of the top event probability/frequency, 

because it decreases failure probability of common cause failure events with higher multiplicities. 

These events are usually greater contributors to the top event probability/frequency than the 

independent component failures. 

 

A disadvantage of the failure probability preservation assumption is that it is not clear how to perform 

the time dependent analysis leading to the same quantitative results.  

 

6. CONCLUSIONS 

 

We have discussed advantages and disadvantages of time dependent analysis of a system with 

common cause failures in comparison to mean value calculation according to formulae from 

NUREG/CR-5485. The main advantage of the time dependent analysis is the great flexibility which it 

offers for modeling of staggered testing, not only between components from one common cause 

failure group, but also between different common cause failure groups and whole systems. We have 

formulated two assumptions for staggered testing which lie behind either the time dependent analysis 

or the mean value calculation. We leave it for further discussion under which circumstances these 

assumptions are reasonable. 
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