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Abstract: Resilience is a dynamic multi-faceted term and complements other terms commonly used in 
risk analysis, e.g. reliability, availability, vulnerability, etc. The importance of fully understanding 
system resilience and identifying ways to enhance it, especially for infrastructure systems our daily 
life depends on, has been recognized not only by researchers, but also by the public. During recent 
years, several methods and frameworks have been proposed and developed to explore applicable ways 
to assess and analyse system resilience. However, they are tailored to specific disruptive 
hazards/events mainly for other than technological systems, or fail to properly include all the phases, 
e.g., mitigation, adaptation and recovery. In this paper, after defining the term, a generic quantitative 
method for the assessment of the system resilience is proposed, which consists of two components: a 
hybrid modelling approach and an integrated metric for resilience quantification. The feasibility and 
applicability of the proposed method is tested using an electric power supply system as the exemplary 
system.   
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1.  INTRODUCTION 
 
Engineered infrastructure systems have always been “complicated”, but in recent years, they have 
witnessed growing integration and interconnectedness, which have turned them into complex systems 
[1, 2]. To better understand the performance of these systems, especially their behaviors during and 
after the occurrence of disturbances (e.g., natural hazards or technical failures), a great effort has been 
devoted by researchers with emphasis on different phases and aspects, e.g. availability assessment 
during the initial loss phase, evaluation of restoration efforts during recovery phase, etc. However, 
these assessments are challenged by the diversity of the physical flow in the infrastructure systems, by 
the lack of comparable indexes for quantifying system performances, and by the multiplicity of loss 
scenarios. A unifying method to analyze and strengthen system performance as responses to 
disturbances is still missing. To this aim, resilience analysis [3-6] is a proactive approach to enhance 
the ability of the infrastructure systems to prevent/avoid damage before disturbance events, mitigate 
losses during the events and improve recover capability after the events. 
 
2.  RESEARCH STREAMS AND PROPOSED METHOD 
 
The term resilience is still evolving and has been developing in various fields. The first definition is 
given by an ecologist, C. S. Holling, who described resilience as “a measure of the persistence of 
systems and of their ability to absorb change and disturbance and still maintain the same 
relationships between populations or state variables” [7]. Since then, others have put forward domain-
specific resilience definitions [8, 9]. The concept of resilience is also introduced to engineered 
technical systems. From an engineering perspective, resilience can be defined as “the ability of the 
system to withstand a major disruption within acceptable degradation parameters and to recover 
within an acceptable time and costs” [10]. In recent years, assessing and engineering resilience of 
infrastructure systems has emerged as a fundamental concern for researchers [11, 12]. Up to now, 
resilience still lacks a comprehensive description, calling for further developments to frame its 
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definition. A broader definition for this term is then proposed in this paper, which describes resilience 
as “the ability of a system or a so-called ‘System of Systems’ (SoS) to resist effects of a disruptive 
internal or external event/force, either shocking or creeping, and the ability to reduce both magnitude 
and duration of deviation of the system performance level between original (or target) state and new 
steady state due to internal and external efficient efforts”. 
 
The proposed definition can be further interpreted as the ability of the system or SoS to withstand a 
change or a disruptive event by reducing the initial negative impacts (absorptive capability), by 
adapting itself to them (adaptive capability) and by recovering from them (restorative capability). 
These capabilities can be regarded as three essential resilience features: enhancing any of them will 
enhance system resilience. They focus on the system response during and after the occurrence of 
disruptive events. It is important to further understand and find ways to quantify them that contribute 
to characterization of the system performance [13]. Absorptive capability refers to an endogenous 
ability of the system to reduce the negative impacts caused by disruptive events and minimize 
consequences. In order to quantify this capability, robustness can be used, defined as strength of the 
system to resist initial impacts [14]. An example of enhancing it is to improve system redundancy, 
which provides an alternative way for system to operate. Adaptive capability refers to an endogenous 
ability of the system to adapt to disruptive events through its self-organization capabilities in order to 
minimize consequences. It is the dynamic ability of the system to adjust itself throughout the recovery 
period. Emergency systems can be used to enhance it. Restorative capability refers to an exogenous 
ability of the system to be repaired by external actions throughout the recovery period. For example, 
installing real-time monitoring systems (e.g., SCADA (Supervisory Control and Data Acquisition 
system) for most infrastructure systems) enhances the system restorative capability because it allows 
the automatic detection or even prediction of disruptive events and, therefore, shortening the total 
disruption period. Both adaptive and restorative capabilities describe the system’s ability during the 
recovery phase, and it is not straightforward to distinguish their effects on system performance, which 
can be improved by enhancing the restorative capability during recovery phase after the deployment of 
repair actions and by enhancing adaptive capability before and after repair actions. Therefore, the 
simultaneous quantification of both capabilities is given same indicators, i.e. rapidity (RAPI) and 
performance loss (PL). 
 

 
 

Figure 1 Illustration of essential resilience capabilities 
 
Figure 1 provides a general illustration of these essential resilience capabilities. The y-axis represents 
the measurement of performance (MOP). Examples of MOP include availability of critical facilities, 
the number of customers served, connectivity of a network, the level of economic activities, etc. The 
selection of the appropriate MOP depends on the specific service provided by the infrastructure system 
under analysis. For generality, in the following we assume that the value of MOP is normalized 
between 0 and 1 where 0 is total loss of operation and 1 is the target MOP value in the steady phase. It 
is assumed that the disruptive event occurs at t0, and that the MOP values starts dropping at t1. It 
should be noted that in many cases t0 might not be equal to t1 and the t1 - t0 delay depends on the 
selection of the MOP and on the disruptive event. For instance, it could take several hours for 
customers to lose electricity services due to maintenance mistakes, while it might only takes seconds 
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for same customers to lose services due to natural hazards such as earthquake, hurricane, etc. System 
susceptibility can be used to characterize the system performance during the time between t0 and t1. 
The focus of this paper is related to resilience quantification after the appearance of the negative 
effects, and therefore, susceptibility will not be considered. The system capabilities that have an effect 
on system resilience can be exemplified with respect to system performance variations following a 
disruptive event. As seen in Figure 1, system#1 performance returns to its original steady level after 
recovering from the lowest level at t2. System#2 performance reaches a new steady level, which is 
lower than its original steady level. It should be noted that the new steady performance level could 
also be higher than its original steady level. System#3 performance drops significantly and finally 
collapses to zero. System#1 and system#2 outperform system#3 with respect to the three essential 
resilience capabilities. Therefore, system#3 can be considered the least resilient system. On the other 
hand, system#1 seems more robust against the disruptive event than system#2, i.e. the lowest 
performance level is higher for system#1 than for system#2. However, it takes more time for system#1 
to reach the new steady level. Therefore, system#2 is more adaptive and restorative than system#1. 
The qualitative assessment and comparison among resilience capabilities call for the development of 
an approach that can be used to quantify them and integrate them into one system resilience index. 
 
During last decade, researchers have proposed different methods and frameworks to quantify/assess 
system resilience. In 2003, the first conceptual framework is proposed by Bruneau et al. in [14]. The 
purpose of this framework is to measure the seismic resilience of a community to an earthquake by 
estimating the expected degradation regarding the quality of community infrastructure. In this 
pioneering research work, the concept of Resilience Loss (RL), later also refereed as so called 
“resilience triangle”, is introduced, which has been widely used afterwards as a fundamental guidance 
for system resilience assessment. Based on this framework, more research works have been carried out 
from different aspects using various approaches. In 2004, Chang and Shinozuka propose a 
probabilistic approach for measuring seismic resilience after earthquake events [15]. In 2007, Rose at 
al., develop static and dynamic metrics based on the resilience loss concept to measure economic 
resilience.  In recent years, the importance of improving the resilience of interdependent infrastructure 
systems or at least minimizing negative impacts caused by unexpected disruptive events has been 
recognized and accepted by the public. Therefore, a variety of research works have been developed 
targeting interdependent systems. In 2008, McDaniels et al. develop a knowledge-based approach 
using decision flow diagrams to improve the understanding of the resilience of infrastructure systems 
[16]. Similar approach is also proposed by Argonne National Lab [5, 17]. This type of knowledge-
based approach is straightforward and easy to understand. However, it is a pure data-driven approach 
and the quality of the collected information could have significant effects on the accuracy of final 
results. To overcome these limitations, more comprehensive analytical approaches have been 
developed with the help of the advanced modeling techniques. In [18], System Dynamic (SD) is 
applied to assess the degree of socio-ecological system resilience. This approach combined with 
Complex Network Theory (CNT) is later applied by Filippini and Silva as part of the framework of 
qualitative resilience analysis of infrastructure systems [19].  
 
Resilience is a dynamic multi-faceted term and its assessment should cover all the phases, e.g., 
disruption and recovery phase, and include all the essential resilience capabilities using an integrated 
metric. Most of existing methods for resilience quantification lack the ability to cover all the phases, 
and to include all resilience capabilities within all integrated metric and even overlap with other 
concepts such as robustness, vulnerability, fragility etc [20, 21]. Some quantitative methods for 
resilience measurement are not consistent with the concept of resilience [22]. Furthermore, these 
methods rely on the modeling approaches that partially capture the complex behavior of infrastructure 
systems. All this makes clear that there is a pressing need to develop a quantitative method for the 
assessment of the resilience of different infrastructure systems subjected to various hazards, which is 
built on the aforementioned challenges and should be able to provide an over-arching and cross 
disciplinary vision of integrated risk management. Therefore, a generic quantitative method targeting 
the holistic analysis of today’s infrastructure systems is proposed and presented in this paper.  The 
method consists of two components: 1) a hybrid modelling approach to achieve a close representation 
of the system and analyze its dynamics during and after the occurrence of the disruptive events. 2) an 
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integrated metric for resilience quantification which can incorporate all essential resilience 
capabilities and characterizing resilience as the system ability. The focus of this paper is mainly 
related to the second component of the method.  
 
3.  METHOD PART 1-A HYBRID MODELLING APPROACH 
 
Developing a comprehensive modeling framework with the capabilities of achieving a closer 
representation of infrastructure systems and gaining insights into interactions within and among them 
is vital for improving our understanding of these systems. Currently, a broad scale of modeling 
approaches have been developed, e.g., Input-output Inoperability Modeling (IIM), Complex Network 
Theory (CNT), Agent-based Modeling (ABM), System Dynamic (SD), Petri-Net (PN), etc (see [23] 
and [24] for details about these approaches). The lack of coherent modeling approaches hinders the 
possibilities of analyzing dynamic system behaviors in a sufficient way. Therefore, it is essential to 
develop a comprehensive modeling approach with the capabilities of achieving in-depth insights of 
infrastructure system behaviors. In practice, there is still no "silver bullet approach". Instead, it has 
proven necessary to integrate different types of modeling approaches into one simulation tool in order 
to fully utilize the advantages of each approach and optimize the efficiency of the overall simulation. 
In [25], the PN approach is integrated with the ABM approach to model interdependent infrastructure 
systems. In [26], authors combine the CNT with SD approach in order to develop a resilience 
indicator. However, all of these hybrid approaches are not capable to solve one of key challenges for 
developing such type of simulation tool: the required ability to create multiple-domain models, and 
effectively exchange data among them [27]. One solution for handling these technical difficulties and 
meeting these challenges is to distribute different simulation components by adopting the concept of 
modular design [28]. Through this approach, the overall simulation tool is divided into different 
simulation modules, which are domain-specific or sector-specific simulation components. The 
modules are then combined in a distributed simulation platform [24, 29].  
 
4.  METHOD PART 2-AN INTEGRATED RESILIENCE METRIC 
 
Resilience is a complex concept that can not to be adequately addressed considering one single system 
capability[16]. One solution is to develop corresponding measures assessing various essential 
resilience capabilities in different phases, and then integrate them into a unique resilience metric. 
 

 
 

Figure 2 System resilience transitions and phases 
 

The performance of the system#1 shown in Figure 1 is further illustrated in Figure 2, and it can be 
characterized by four phases and three transitions. The first phase is the original steady phase (t<td), in 
which the system performance assumes its target value. The second phase is the disruptive phase 
(td≤t<tr), in which the system performance starts dropping until reaching the lowest level at time tr. 
During this phase, the system absorptive capability can be assessed by developing appropriate 
measures. As discussed in Section 1, Robustness (R) is one measure to assess this capability, which 
represents the minimum MOP value. This measure is able to identify the maximum impact caused by 
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disruptive events; however, it is not sufficient to reflect the ability of the system to absorb the impact. 
Two additional complementary measures are further developed: Rapidity (RAPIDP) and Performance 
Loss (PLDP) during disruptive phase. In [30], the term rapidity is referred as “the capability to meet 
priority and achieve goals in a timely manner in order to contain losses and avoid future disruption”. 
This term can be quantified mathematically as the slope of performance level. To improve the 
accuracy of the estimation of the measure rapidity, the method of ramp detection can be adopted. In 
general, a ramp is a change with a large enough amplitude and over a relatively short period [31]. 
According to [32], a ramp is assumed to occur if the difference between the measured value at the 
initial and final points of a time interval Δt is greater than a predefined ramping threshold value. The 
system rapidity can then be calculated as the average of slope of each ramp. Compared to the 
calculation of average the rapidity, this method is more comprehensive in term of capturing the system 
performance during different phases. The performance loss, using the system illustrated in Figure 2 as 
an example, can be interpreted can be quantified as the area of the region bounded by the graph of the 
measurement of performance before and after occurrence of negative effects caused by disruptive 
events, which can also be referred as the system impact area. A new measure, i.e. the time averaged 
performance loss (TAPL), is introduced. Compared to the measure PL, it encompasses the time of 
appearance of negative effects due to disruptive events up to full system recovery and provides a time-
independent indication of both adaptive and restorative capabilities as responses to the disruptive 
events. A system that experiences less performance loss has larger resilience. The third phase is the 
recovery phase (tr≤t<tns), in which the system performance starts increasing until the new steady level. 
During this phase, the system adaptive and restorative capability can be assessed by developing 
appropriate measures: Rapidity (RAPIRP) and Performance Loss (PLRP). As shown in Figure 2, the 
newly attained steady level may equal to the previous steady level. But it may also reach a lower level. 
In order to take these situations into consideration, a simple quantitative measure Recovery Ability 
(RA) is also developed.  Different system phases and related system capabilities are summarized in 
Table 1.  
 

Table 1 Summary of different resilience phases  

 
 
Although the measurements introduced above are useful in assessing system behavior during and after 
disruptive events, an integrated metric with the ability of combining these capabilities is needed in 
order to assess the system resilience with an overall perspective and to allow comparisons among 
different systems and system configurations. Therefore, a general resilience metric is further 
developed. This metric differs from existing ones in that it is time-dependent and able to incorporate 
all three essential capabilities. Furthermore, it is not system-specific. The resilience metric builds on 
the quantification of the system capabilities and is calculated as: 
 
𝐺𝑅 = 𝑅 ×( 𝑅𝐴𝑃𝐼𝑅𝑃
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𝑡𝑑

𝑡𝑛𝑠−𝑡𝑑
)−1   ×  �𝑀𝑂𝑃(𝑡𝑛𝑠)−𝑀𝑂𝑃(𝑡𝑟)
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�       (1)        

 
Where TAPL represents time average performance loss; KDP and KRP represent number of 
detected ramps in disruptive phase and recovery phase; MOP(t0) represents performance level at 
original steady phase. The GR provides an integrated way to measure the system resilience by 
considering all essential capabilities, which is consistent with original definition of the term of 
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resilience. This approach of measuring system resilience is neither model nor domain specific. For 
instance, historical data can also be used for the resilience analysis. It only requires the time series data 
that represents system output during whole time period, making the selection of the MOP very 
important. The GR is a non-negative metric and its value equals to zero if 1) the performance level 
drops to zero after the disturbance (R=0), 2) after the disturbance events, the system performance 
immediately drops to its lowest level (RAPIDP  ∞, i.e. no absorptive capability), 3) the system 
performance maintains at the lowest level, R, which is the new steady state (RAPIDP=0, i.e. no 
adaptive and restorative capability). Furthermore, the GR value is dimensionless and is most useful in 
a comparative manner. For instance, it can be used to compare the resilience of various systems to the 
same disruptive event.  More resilient system results in higher GR value. It can also be used to 
compare resilience of same system under different disruptive events. Higher GR value indicates that 
the system is more resilient to certain disruptive events. Furthermore, the GR value can be used to 
compare resilience of a system to a specific disturbance under different improvement strategies. A 
more effective improvement strategy should increase the GR value.  
 
5.  CASE STUDY  
 
Electric power systems are among most prominent representatives of engineered infrastructure 
systems and the need for their reliable and resilient performance during disruptive events becomes 
essential [33, 34].  In this paper, the high voltage Swiss electric power supply system (EPSS) is 
selected as an exemplary application to demonstrate the feasibility and applicability of the proposed 
quantitative method for resilience assessment.  
 
5.1. Modelling Exemplary System 
 
 

 
                                          
                                                    Figure 3 Representing EPSS in three subsystems (layers) 

 
The modelling of CI is a whole research field by itself. Modelling entire infrastructure system as 
a whole is usually impractical [35-37]. Choosing relevant subsystems and modelling them efficiently 
for the intended purposes seem more promising. For each subsystem, appropriate modelling 
approaches/methods can be determined to fully represent its behaviour and functionalities. This type 
of modelling approach can also be referred as an example of the hybrid modelling approach, 
introduced in Section 2. Using this approach, the EPSS can be viewed as three interrelated subsystems 
in corresponding layers, i.e., system under control (SUC), operational control system (OCS), and 
social system (SS). Both SUC and OCS can be regarded as technical systems, while the SS is regarded 
as non-technical systems. The SUC represents technical systems that are mainly time-based. In order 
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to fully model this type of systems, both functionality (physical laws) and structure (topology) need to 
be considered. The OCS represents technical systems that are mainly responsible to control and 
monitor corresponding SUC, e.g., SCADA system. In general this type of systems is event-driven / 
service-oriented. The developed model needs to be able to process messages among components 
efficiently and functionality of the system needs to be represented in detail. The SS represents non-
technical systems that are mainly related to social factors. e.g., human performance, etc, that intend to 
have influences on the overall system performance. The developed model representing this subsystem 
need to be able to evaluate and quantify the effects of these social factors. The approach of HRA 
(Human Reliability Analysis) seems adequate. Figure 3 shows a simplified multi-layer representation 
of the EPSS with three interacting subsystems and associated elements (components): parallel planes 
represent different subsystems in corresponding layers while nodes represent various elements 
together with some of interconnections among them. The elements of the various layers depend on 
each other, depicted by various horizontal (inside a layer) and vertical (between layers) links.  
 
A two-layer ABM-based modelling approach has been developed for purpose of integrating stochastic 
time-dependent factors into the resilience assessment of the EPSS [38]. Within the two-layer concept, 
the lower layer represents the separate modelling of the physical components by means of 
conventional, deterministic techniques such as power flow calculations, whereas the upper layer 
represents the abstraction of the electric power system with all its components as individual agents. 
Based on this approach, a time-stepped and agent-based model is developed to simulate the SUC. In 
total, 585 agents are created to model corresponding components, i.e., transmission lines, generators 
and loads. Similar to the modelling approach used to model the SUC, a failure-oriented two-layer 
ABM-based modelling approach is also used to model the SCADA system. In total, 587 agents are 
created to corresponding components, i.e., FCDs, FIDs, and RTUs [24]. In order to model SS, i.e. 
human operator performance in this case, the CREAM method combined with the ABM and Fuzzy logic 
is implemented [24]. It is the first effort to implement a human operator performance model capable 
assessing Performance Shaping Factors (PSFs) dynamically using the ABM approach. During the 
simulation, if there is a request for the operator take actions (e.g., handle an alarm), the PSFs will be 
assessed based on current simulation environment, e.g., time of day, simultaneous goals, etc, and 
corresponding Human Error Probability (HEP) ([0,1]) will then be calculated. The lower HEP value 
indicates better performance by human operators. To decide whether or not there is an error by human 
operators, it is necessary to set a threshold value (HEPA) representing the maximum acceptable HEP 
value. If a calculated HEP is more than HEPA, then it is assumed that a human error occurs (the human 
action fails to perform). The higher HEPA indicates less human errors. All the developed models of three 
subsystems are integrated in a High Level Architecture (HLA)-compliant experimental simulation 
platform.  
 
5.2. Design of Experiment 
 
Although little damages caused by natural hazards have been observed throughout last century in 
Switzerland, historical records reveal that hazards such as earthquakes and winter storms were the 
cause of significant damage in at least 9 events over the past 1000 years [39]. According to [40], the 
estimated frequency of natural hazards, i.e., winter storms, which have the potential to result in the 
simultaneous disconnection of 20 transmission lines is about 6E-4 to 7E-4 per year. The impact of this 
disruptive event will result in large negative effects, and should not be underestimated even if the 
frequency of its occurrence is relatively low (low frequency, high consequence event). Therefore, in 
this paper, it is assumed that a natural hazard, e.g., winter storm, impacts central region of 
Switzerland, where power transmission lines are located; as a result of this event, 17 transmission lines 
are disconnected. This region is selected for the system resilience experiment based on the Lothar 
winter storm occurred in 1999 [41]. To simulate the performance response of the infrastructure under 
study (EPSS) subjected to the disruptive event, all three models (SUC, SCADA, SS) are included in 
the experiment. The number of available transmission lines is selected as the MOP. The simulation 
starts at the t = 0 h. It is assumed that the disruptive event occurs at time 3 h. Before this time, all the 
modeled systems are in the original steady state and operate under normal conditions. At the t = 3 h, 
the failure generator triggers the disconnection of 17 predefined transmission lines within region 
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affected by the storm. In order to model the quasi-simultaneous disconnection of the affected lines, it 
is assumed that the interval between disconnections of two lines follows a normal distribution N(35,3) 
seconds. The sudden disconnection of a transmission line will be first detected by the corresponding 
RTU (Remote Terminal Unit) component of the SCADA system and an alarm will be sent to the 
control center (MTU), which is referred as the abnormal line disconnection alarm. After receiving the 
alarm, repair actions will be determined by the operators in the control center in order to restore the 
disconnected lines. It is assumed that the general response time (ResponseG) for this type of alarm 
follows a normal distribution N(80,5) seconds. The sudden disconnections of many transmission lines 
may overwhelm the operators in control center, possibly resulting in the delay of response and repair 
actions. In order to simulate this situation, the formula below is used to calculate actual response time 
(ResponseA):  
 

                ResponseA = delay factor * ResponseG 
                 

                Delay factor =  �weighting factor ∗ (HEP − HEPA) + 1 (HEP ≥  HEPA)
                                                  1                 (HEP < 𝐻𝐸𝑃A)            (2)     

 
The actual response time (ResponseA) determined by the delay factor should close to reality and 
therefore, need to remain in a rational range. In this experiment, weighting factor is set to 100 based 
on results from after several trial runs. It is assumed that repair actions for the abnormal disconnected 
lines are always performed successfully and the repair time is assumed to follow exponential 
distribution with the mean value equal to MTTR (mean time to repair). The sudden disconnections of 
transmission lines could also overload other transmission lines, especially their neighboring ones [42], 
and have the potential for knock-on effects with cascading consequences. If a transmission line is 
overloaded, an overload alarm will be generated and sent to the operator in the control center (MTU) 
by the corresponding RTU component. If the operator recognizes this alarm and handles it 
successfully (HEP<HEPA), the corrective actions will be performed, i.e., power load re-dispatch. 
However, if no action is taken after a certain time past the overload alarm, it is considered that the 
operator has failed to react to the overload alarm (HEP≥HEPA), and the protection devices, e.g., circuit 
breakers, will automatically disconnect the overloaded line to prevent permanent damages to the 
infrastructure. In general, abnormal line disconnection alarms are triggered when the system is in 
disruptive phase (td≤t<tr) and the handling of this alarm completes when the system is in recovery 
phase (tr<t<tns). Conversely, overload alarms can be triggered either at the disruptive or recovery 
phase because overloads. The simulation stops when the systems reach the final steady state. Then, the 
performance measures, including the GR, are evaluated. Furthermore, a reliability metric is also 
calculated, i.e. ASSAI (Average Substation Service Availability Index), which is the ratio of the total 
number of hours that service is provided by all available substations during a given time period to the 
total demanded hours (Eq 2).  
 

                              ASSAI=   NS ×(number of hours)−∑ Resi
NS
i=1

NS ×(number of hours)                            (2)      
 
where Resi represents the restoration time for ith substation if service interruption exists and NS 
represents the total number of substations.  
 
Two hypothetical strategies are considered in order to compare system’s resilience to the same 
disruptive event, i.e. improvement of the human operator performance (increasing HEPA) and 
efficiency of line reparation (decreasing MTTR). In total, 18 experiments are set: HEPA ∈
{0.03,0.3,1}  and MTTR(h)  ∈ {0.5,1,1.5,2,2.5,3} . The number of simulation runs (N) for each 
experiment is determined by the coefficient of variation (CV) of the resilience measure of the 
corresponding target system. In this simulation, CVGR ≤ 0.13 is the criteria to determine the number of 
runs for each computer experiment which are needed to estimate system resilience.  
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5.3. Simulation Results 
 
Figure 4 shows the system performance following the disruptive event under various simulation 
scenarios, in which the MTTR varies from 0.5 h to 3 h and HEPA is set to 0.3. In Figure 4, the y-axis 
denotes the MOP (the number of available transmission lines) and the x-axis denotes the simulation 
time. At time t = 3 h, the disruptive event is triggered. The negative effects caused by this event start 
to appear immediately, i.e. the MOP value starts dropping. After about 12 minutes, the MOP value 
reaches its lowest level, i.e. 92.1%. The MOP value then begins to increase as the result of the repair 
actions. Similar results are observed in Figure 5, in which HEPA value varies from 0.03 to 1 and 
MTTR value is set to 2.5 h. Compared to the results shown in Figure 4, human operator performance 
has influence not only on the system adaptive and restorability capability during recovery phase, but 
also on the absorbability capability during disruptive phase, although the effects on the latter are less 
significant. It can be seen that system robustness is enhanced by improving human operator 
performance. 
 

 
      Figure 4 The system performance under different experiments with 
varying MTTR (HEPA=0.3, N={18,10,11,10,13,11} for MTTR from 0.5 
h to 3 h) 

 
  Figure 5 The system performance under different experiments 

with varying HEPA (MTTR=2.5 h, N={14,13,10} for HEPA 
from 0.03 to 1) 

 
 Figure 4 and 5 provide parts of simulation results demonstrating the feasibility of the developed 
method for the system resilience analysis. The overall simulation results are summarized in Table 2, 
including the coefficient of variation for each measure. It should be noted that the CV value for R 
varies very little for each case and is not included in Table 2.  The strategy of improving the repair 
efficiency has little effects on the absorptive capability of the infrastructure. As seen from the Table 2, 
all the measures related to this capability, i.e., R, PLDP, RAPIDP, vary not significantly if comparing 
results from case studies with same HEPA value but different MTTR value. 

 
Table 2  Summary of the overall simulation results 
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The R value remains unchanged, while the difference among values of PLDP and RAPIDP is relatively 
low. For example, if HEPA is set to 0.03, i.e. the human performance is poor, PLDP value remains at 
the range of [0.026, 0.027] and RAPIDP value remains at the range of [0.437, 0.439] even if the repair 
efficiency is improved. Compared to the improvement of the repair efficiency, improving the human 
operator performance (higher HEPA value) is able to enhance the absorptive capability more 
significantly. For example, if HEPA is set to 0.3, i.e. the human performance is average/acceptable, the 
PLDS value drops to the range [0.0072, 0.0076]. This indicates that system performance is less 
impacted during disruptive phase if the human operator performance is improved. A similar trend is 
also observed for the measure of R, which increases from 91.6% to 92.1% when the HEPA value is 
increased from 0.03 to 0.3. However, both R and PLDP do not vary significantly if the HEPA value is 
increased from 0.3 to 1, indicating that this strategy becomes inefficient when the operator 
performance is at an average/acceptable level. Compared to effects on the enhancement of absorptive 
capability, the strategy of improving the repair efficiency is able to enhance system adaptive and 
restorative capability more significantly. The PLRP value rises from 0.09 to 0.27 when MTTR value is 
increased from 0.5 to 3 h and the HEPA value is set to 0.03. This indicates that the system performance 
is less impacted during recovery phase if the efficiency of the repair actions is improved. A similar 
trend can also be observed in other cases (HEPA = 0.3 and 1). Improving the repair efficiency also has 
positive effects on the value of RAPIRP, which increases from 0.25 to 0.292 (1/h), when MTTR value 
is increased from 0.5 to 3 h and the HEPA value is set to 0.03, indicating that more time is needed to 
recover to a new steady state. Compared to improving repair efficiency, improving the human operator 
performance has little effects enhancing the adaptive and restorative capability. For example, the PLDP 
value remains within the range [0.08, 0.09] when HEPA value is increased from 0.03 to 1 and the 
MTTR value is set to 0.5 h.  
 
Both strategies have positive effects on the enhancement of resilience capabilities. Improving repair 
efficiency is a more efficient strategy to enhance the system adaptive and restorative capability during 
the recovery phase. On the other hand, improving human operator performance is a more efficient 
strategy to enhance the system absorptive capability during the disruptive state. In order to assess that 
whether these strategies are able to enhance the overall resilience capability, the integrated GR metric 
must be used. Figure 6 illustrates the value of GR, i.e. the system resilience to the disruptive event, 
with respect to the two improvement strategies using the 3D surface diagram. When both improving 
strategies are performed simultaneously, the system resilience can be enhanced significantly. Figure 6 
indicates 51.6% increase of GR value from 13.73 to 20.82 when MTTR value decreases from 3 hours 
to 0.5 h and HEPA increases from 0.03 to 1. 
 

       
 
Figure 6 The GR value under different simulation scenarios                            Figure 7 The ASSAI value under different simulation scenarios 
 
Figure 7 illustrates the ASSAI value, i.e. system reliability after the disruptive event, with respect to 
the two improvement strategies using the 3D surface diagram. Reliability and resilience are correlated, 
although they characterize system performances from different aspects. Reliability is a property of the 
system; conversely, resilience is an ability of the system. The reliability metric shows a trend which is 
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similar to the trend of resilience, indicating that both improvement strategies have non-negative effects 
on system reliability and resilience. Nonetheless, according to the Figure 6 and 7, the implementation 
of both improving strategies improves significantly the system’s ability to withstand the negative 
effects caused by the disruptive event (GRSUC increases 51.6% from 13.73 to 20.82); but on the other 
hand, it is not capable of improving the system’s safety property significantly (ASSAI value only 
increases 2.3% from 0.973 to 0.995 under same scenario). The comparison between these two metrics 
exemplifies the advantage of the proposed resilience metric, which is capable of quantifying the 
behavior of systems in a more comprehensive way by integrating the information related to the system 
performance in various phases of system loss, adaptive, and recovery. 
            
6.  CONCLUSION  
 
Research work on modern infrastructure systems is of great importance for our societies and 
protection of their assets. In recent years, the infrastructure system evaluation and analysis have 
broadened to the development of systemic approaches to analyse and understand their behaviours in a 
holistic way. This paper presents a quantitative method including a novel hybrid modeling approach 
and the time dependent quantifiable metric for resilience measurement in the context of engineered 
infrastructure systems. Within this method, three resilience capabilities as well as different 
measurements and phases related to these capabilities are identified. In order to demonstrate the 
feasibility and applicability of the proposed quantitative method, it is applied to evaluate behaviors of 
an electric power supply system (EPSS) after the occurring of a natural hazard, e.g., a winter storm, 
using two hypothetical improvement strategies (i.e., improvement of the repair efficiency an 
improvement of human operator performance). The results show that although both strategies are able 
improve the system resilience significantly, their effects on different resilience capabilities vary. These 
results also indicate that besides its capability of providing the final outcome quantifying the system 
behaviors, the resilience metric is also capable of gaining insights into different phases by evaluating 
corresponding system capabilities, providing a more flexible and comprehensive way to analyze 
system behaviors compared to the reliability metric (e.g., ASSAI) by gaining insights into system 
performance in different phases and highlights the limits of reliability indicators in capturing 
resilience. The ultimate goal is to apply the proposed method in order to develop efficient mitigation 
and protection strategies by decision makers to maintain and retrofit resilience of infrastructure 
systems in the long run. Future research work will intend to explore possibilities of expanding the 
capabilities of this method in other domains, e.g., organizational and social domain. Furthermore, the 
concept of resilience costs, e.g., service lost cost due to disruptive events and recovery costs, will also 
be considered in order to improve the applicability and usefulness of the resilience metric. Systems 
that are resilient to a disruptive event will have lower costs than systems that are less resilient to same 
event.  
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