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Abstract: Analyzing possible proliferation scenarios can provide insights on the most vulnerable 
stages of a nuclear system. With large number of scenarios, their manual examination becomes 
infeasible. One possibility for reducing the complexity of the data and discovering possible trends is 
via automated grouping of scenarios. The k-means clustering algorithm is widely used to group large 
amounts of data. This algorithm is very efficient, however, it requires the number of clusters to be 
known a priori. In this paper, we aim to overcome this issue by investigating several goodness-of-fit 
measures. Namely, using a set of proliferation scenarios modeled by PRCALC, we implement and 
compare the Bayesian Information Criterion, Akaike Information Criterion, Cluster Cohesion 
Coefficient and Anderson-Darling Normality Test to estimate the optimal number of clusters k for the 
k-means clustering algorithm. Experiments show that the examined measures can provide insights on 
the structure of the data. 
 
Keywords:  Scenario grouping, model estimation, PRCALC, non-proliferation 
 
1.  INTRODUCTION 
 
The identification of the stages of a nuclear fuel system that are the most vulnerable to material 
diversion is an important element of assuring proliferation resistance. Software developed at 
Brookhaven National Laboratory called PRCALC [1] is capable of modeling the proliferation process 
as a Markov chain to estimate various proliferation resistance measures. Because comprehensive 
coverage of the PRCALC parameter space may lead to thousands of scenarios, manual analysis of the 
resulting data is infeasible. Clustering the output data and then analyzing the properties of the clusters 
can yield insight into the most vulnerable stages of a fuel cycle. 
 
Recently, there has been effort at The Ohio State University towards automated analysis of PRCALC 
output [2] by grouping the produced scenarios using various clustering techniques. A clustering 
algorithm referred to as k-means is one of the most popular clustering methods, widely encountered in 
literature. This method is very efficient, and, therefore, it is preferred for very large datasets, such as 
the PRCALC output. A drawback of k-means algorithm is that the number of clusters k must be known 
a priori. The number of clusters is generally determined based on prior knowledge or practical 
experience, which may not always be available and places an unnecessary burden on a PRCALC user. 
Moreover, the true number of clusters is often not obvious, especially when the data dimensionality is 
high. An improperly chosen value of k may have an adverse effect on the resulting grouping. 
Introducing the option to select the number of clusters automatically would provide new insights on 
the underlying structure of the data and increase the applicability of k-means algorithm. 
 
Several algorithms that determine the number of clusters k automatically have been proposed in the 
literature. A common approach is to evaluate clustering outcomes with different number of clusters 
based on a certain scoring function. In this paper, we implement and compare several scoring 
functions used to evaluate clustering outcomes, namely the Bayesian Information Criterion (BIC) [3], 
Akaike Information Criterion (AIC) [4], Cluster Cohesion Coefficient (CCC) [5] and Anderson-
Darling Test (ADT) [6]. BIC and AIC evaluate a given model based on the likelihood of the data 
fitting this model penalized by the model complexity. They try to balance the goodness of fit with the 
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function of the number of parameters used to describe the model. The CCC is based on the inter- and 
intra-cluster similarity, where the desired grouping results in high similarity within the same cluster 
and low similarity between the members of different clusters. The ADT is a powerful normality test 
based on the empirical cumulative distribution function. It is used to decide whether the members of 
the same cluster are sampled from a Gaussian distribution, so that the cluster is further split if the test 
fails. In addition, we compare k-means results to that of mean-shift [7] and adaptive mean-shift [8], 
which are alternative clustering methods. 
 
The rest of the paper is organized as follows. In the next section, we describe PRCALC and data 
generation process. Section 3 summarizes the methods for automated model selection. The results of 
the application of these methods to the generated data are presented in Section 4. Finally, we conclude 
in Section 5. 
 
2. SCENARIO GENERATION 
 
The Treaty on the Non-Proliferation of Nuclear Weapons, which went into force in 1970, is primarily 
enforced through safeguards implemented by the International Atomic Energy Agency (IAEA). There 
are various types of safeguards including inspections of records, surveillance of activity in sensitive 
areas, and material accountancy. A particular situation of interest in the field of proliferation resistance 
(PR) is a nation that allows safeguards at a nuclear site but covertly diverts material for illicit use. 
 
PRCALC is a tool developed to address covert diversion scenarios. Its main focus is on a site 
comprising multiple Generation IV reactors for power generation as well as a fuel reprocessing plant. 
The hypothetical reactor is the Example Sodium-cooled Fast Reactor (ESFR), which takes in light 
water reactor (LWR) spent fuel (SF) as its main fuel source. LWRSF is composed mostly of uranium-
238, uranium-235 fission products, and transuranic (TRU) elements. In the reprocessing plant seen 
schematically in Figure 1, the LWRSF is physically broken down and chemically separated. Some of 
the materials cannot be used in the ESFR, and are diverted to a waste stream. The useful fuel material 
is then re-formed into ESFR fuel assemblies for use in the reactors. The overall aim is to retrieve more 
energy from LWR fuel before it is considered waste. 
 

Figure 1. PRCALC Reprocessing Plant Schematic (adapted from [9]). 
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In the scenario modelled by PRCALC, each step of the recycling process is a potential target for the 
would-be proliferator. Material diversion is represented by a Markov model, with 3 absorbing states: 
Success, Failure, and Detection. Success, from the point of view of the proliferator, is to obtain 1 
significant quantity (SQ) equivalent of nuclear material, which the IAEA defines as, “the approximate 
amount of nuclear material for which the possibility of manufacturing a nuclear explosive device 
cannot be excluded.” Failure represents a technical failure of some sort, either in obtaining material or 
in processing it to a usable form by the proliferator. Detection represents an alarm being raised and 
confirmed by the safeguards system. The probabilities of Detection (DP), Success (PS), and Failure 
(PF) are outputs of PRCALC, and sum to 1 for any given scenario. Another output is Proliferation 
Time (PT), which estimates the time that would be required, given the rates and locations of diversion, 
to obtain 1 SQ equivalent and process it into its form. The final output is Material Type (MT), which 
reflects the effort required to process the diverted material into usable form. For example, reactor-
grade plutonium has a higher MT value than LWRSF. 
 
PRCALC scenarios are unique combination of input parameters that are run to produce the outputs 
described in the previous section. For this work targets, diversion rates, and safeguard conditions were 
varied to create 65,520 scenarios. Seven targets were chosen (Table 1) out of the 23 potential targets in 
the PRCALC ESFR model. Four diversion rates were chosen: 0, 1σ, 2σ, and 4σ. σ refers to a fractional 
diversion rate of material from a target with an implicit increased probability of detection with higher 
values of σ. Four safeguard conditions were chosen, starting with the default safeguards in the 
PRCALC ESFR model. The remaining 3 conditions simulated the complete breakdown of Physical 
Inventory Verification (PIV), Surveillance & Monitoring, or Containment safeguards. These were 
included to show the effects of the proliferator surreptitiously compromising the integrity of IAEA 
safeguards. 
 

Table 1. PRCALC Targets Chosen. 
Target Number Target Name 

1 TRU Extraction 
2 Electro-refiner 
3 Pin Fabrication 
4 Storage Basket: Fresh Fuel 
5 ESFR SF Disassembly 
6 Chopping 
7 LWR SF Storage 

 
 
Scenarios were created by taking every combination of the targets and diversion rates. Scenarios were 
then copied and modified for each safeguard condition. The number of scenarios was calculated as 
Nscen = r

Nstage ×NSG , where Nscen is the total number of scenarios, Nstage is the number of target stages, 
r is the number of possible diversion rates, and NSG is the number of safeguard conditions. This yields 
65,536 scenarios. Four scenarios were created with a diversion rate of 0 for every target, and these 
scenarios were removed. Finally, 12 scenarios were removed before clustering due to having very high 
values of PT. These scenarios existed in 3 groups of 4 scenarios each, and were clearly outliers to be 
considered separately from the rest of the set. This left 65,520 scenarios to be clustered. The scenarios 
are visualized in Figure 2. 
 
3.  AUTOMATED MODEL SELECTION 
 
In this section, we briefly describe the criteria employed in automating the selection of number of 
clusters k. We first introduce the notation used throughout the paper. The set of all observations is 
represented as a n× d  matrix D , where n  is the number of observations and d  is the dimensionality 
of the feature space. The model Mk  denotes the clustering result with k clusters C1,C2,…,Ck . The 
number of observations in cluster Ci  is referred to as ni . 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Figure 2. Visualization of generated scenarios. The dimensions correspond to PT, DP and PS. 
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3.1.  Bayesian Information Criterion (BIC) 
 
The BIC, also known as Shwarz criterion, can be computed as [3] 
 

BIC(Mk ) = l̂k (D)−
pk
2
logn ,     (1) 

where l̂k (D)  is the maximum log-likelihood of the data with respect to the model Mk , and 
pk = k(d +1)  is the number of parameters in Mk . According to BIC, the best model is the one 

resulting in the highest log-likelihood and has the lowest number of parameters. Since k-means 
assumes spherical Gaussian for each cluster shape, the maximum likelihood estimate for the variance 
is 

   σ̂ 2 =
1

n− k
(xi −µ(i) )

2

i
∑ ,     (2) 

 
where µ(i)  is the centroid of the cluster to which xi  was assigned. The point probabilities can be 
computed using 

p̂(xi ) =
ni
n
⋅

1
2πσ̂ d

exp −
1
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Then, the log-likelihood of the data with respect to the model Mk is calculated using the point 
probabilities as 

l̂k (D) = log p̂(xi )
i=1

n

∏ = log 1
2πσ̂ d

−
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∑ ni − n logn .  (4) 

 
The BIC score is used to evaluate the clustering schemes with different k, and the model resulting in 
the highest BIC score is selected. In context of k-means algorithm, the BIC was applied by Pelleg et 
al. [10] to introduce a variant of the k-means algorithm referred to as x-means. 
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3.2.  Akaike Information Criterion (AIC) 
 
Similarly to the BIC, the AIC aims to balance the goodness of fit with the function of the number of 
parameters used to describe the model. The AIC has the form 
 

AIC(Mk ) = l̂k (D)− pk ,      (5) 
 

where l̂k (D)  is defined in (4) and pk = k(d +1) . Note that, with this formulation, the BIC penalizes 
the complexity of the model more heavily than the AIC. As with BIC, the higher AIC score indicated 
better model fit. 
 
3.3.  Cluster Cohesion Coefficient (CCC) 
 
The CCC for a cluster Ci  is defined as [5] 
 

CCC(Ci ) =
1
ni

Bj − Aj

max(Aj,Bj )j∈Ci

∑ ,    (6) 

 
where 

Aj =maxp∈Ci
x j − xp   and   Bj =minp∉Ci

x j − xp ,   (7) 

 
so that Aj  is the maximum distance between a given point and all other points within the same cluster, 

and Aj  is the minimum distance between a given point and all points belonging to other clusters. The 

CCC for a model Mk  is the computed as 

CCC(Mk ) =
1
k

CCC(Ci )
i=1

k

∑ .    (8) 

 
The low values of CCC indicate low coherence and, therefore, a poor model. The best model is 
selected as the one having the highest CCC score. 

 
3.4.  Anderson-Darling Test (ADT) 
 
ADT leverages the fact that k-means algorithm assumes spherical distribution for each cluster. In other 
words, the data points in each cluster are assumed to be sampled from a multidimensional Gaussian 
distribution. The ADT is based on the Anderson-Darling statistic, which is “normality measure”. Let 
x1, x2,…, xn  be the sorted data that have been standardized to have mean 0 and variance 1. Let  
zi = F(xi ) , where F  is the N(0,1)  cumulative distribution function. The Anderson-Darling statistic 
is then computed as 
 

A2 (Z ) = − 1
n

(2i−1)[log(zi )+ log(1− zn+1−i )]
i=1

n

∑ − n.    (9) 

 
It has been shown that when the mean µ  and the standard deviation σ  are estimated from the data, 
the statistic is further corrected as [11] 
 

A*
2 (Z ) = A2 (Z )(1+ 4 / n− 25 / n2 ).     (10) 
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Hamerly et al. [6] proposed a variant of k-means algorithm referred to as G-means, which discovers an 
appropriate number of clusters k using ADT to decide whether to split an existing cluster into two or 
to stop if the cluster follows a Gaussian distribution. Let Mq = {C1,C2,…,Cq}  be the initial set of 
cluster centers, with a small q . The G-means algorithm can be summarized as following: 

1. Perform initial clustering with q , such that Mq = kmeans(X,q) . 
2. For each i =1,2,…,q  

2.1.  Let Xi = {x j | j =1,2,…,ni}  be the data that belongs to center Ci . 

2.2.  Initialize two centers as Ci ± s 2λ /π , where s  is the main principal component of Xi  
with eigenvalue λ . Run k-means on Xi  with these initial centers. Let the resulting 
centers be c1,c2 . 

2.3.  Compute a d-dimensional vector v = c1 − c2  connecting c1  and c2 , which is the 

direction important for k-means clustering. Project Xi  onto v as !x j = xi,v / v
2

 to 

obtain a 1-dimensional representation of Xi . Then, transform !Xi  to have 0 mean and 
variance 1. 

2.4.  Compute Z = F(Xi
!) . If A*

2 (Z )  is within the range of non-critical values at a 
confidence level α , then keep the cluster Ci  and continue to 2.1 with i = i+1 . 
Otherwise, keep c1,c2  in place of Ci  and continue to 1 with q = q+1 . 

3. Stop when no new clusters are added. 
 
The significance level α  is chosen according to Bonferroni adjustment to reduce the chance of 
incorrectly splitting the clusters over multiple tests [6]. 
 
4.  EXPERIMENTS 
 
To apply the BIC, AIC, CCC and ADT discussed in Section 3, we first perform k-means on the 
scenarios generated as described in Section 2. To reduce the effect of random initialization of k-means 
algorithm, we ran the algorithm 100 times for each k = 2, ..., 70. Figure 3 shows the plot of average 
BIC value for each k (shown in black). We further fit a polynomial curve (shown in gray) to the BIC 
values to eliminate the occasional peaks corresponding to local maxima. According to BIC, the best 
number of clusters for the data is k = 24. The same procedure is applied for AIC. Similarly to BIC, the 
highest AIC score results in k = 24 (Figure 4). Also observe that, in general, BIC and AIC curves 
appear very similar. Due to the large number of data points, the likelihood terms in BIC and AIC are 
significantly larger than the second terms (see Equations (1) and (5)), therefore, the difference in the 
second terms becomes negligible. Also note that both BIC and AIC tend to decrease gradually after     
k = 24, indicating that the clustering model is a poorer fit after that point. The clustering structure with 
24 clusters is depicted in Figure 5. Points shown with identical symbol and color are the members of 
the same cluster. 
 
Figure 6 shows the plot of the CCC values. Recall that the highest CCC value indicates the best model. 
While for the range of k = 2, …, 70 the highest CCC value is obtained for k = 2, we observe the 
increasing trend after around k = 15, which indicates that the best k according to CCC score might be 
greater than 70. To confirm this assumption, we compute the CCC for k = 100, 200, 300, 400, 500, 
600, 700, 800, 900, 1000 which results in CCC = -0.8147, -0.7802, -0.7604, -0.7449, -0.7279, -0.7176, 
-0.7076, -0.6928, -0.6826, -0.6734, respectively. The CCC value monotonically increases, so it can be 
concluded that the best k according the CCC score is beyond k = 1,000, which may not be a useful 
model for analysis. 
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Figure 3. BIC score for k = 2, …, 70. The highest score corresponds to k = 24. 
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Figure 4. AIC score for k = 2, …, 70. The highest score corresponds to k = 24. 
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Figure 5. Clustering with k = 24. 
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Figure 6. CCC score for k = 2, …, 70. 
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A similar result is obtained with the ADT. As suggested by Hamerly et al. [6], we use α = 0.0001  as 
a confidence level, which corresponds to a critical value 1.8692 for normal distribution ADT. For this 
critical value, the ADT resulted in 1,908 clusters. 
 
According to the BIC and AIC scores, the best model for the examined data resulted in k=24 clusters. 
Note that this may be an adequate number of clusters for a 65,520 data points. On the other hand, the 
CCC and ADT suggest that the number of clusters should be greater than 1,000, which is still too high 
to be useful for manual analysis. This result may indicate that the data violate the assumption of 
cluster shape made by k-means, and a clustering method (for example, mean-shift) that can discover 
clusters with arbitrary shape should be employed. Figures 7 and 8 present the results of applying 
mean-shift [7] with bandwidth h = 0.5 and the adaptive mean-shift [8] clustering algorithms, 
respectively. 
 
 

 Figure 7. The result of mean-shift clustering with h = 0.5. 
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It can be observed that the mean-shift and the adaptive mean-shift result in a lower number of clusters 
than BIC and AIC. The clustering algorithm can be selected depending on the subsequent analysis. For 
example, for a detailed examination, smaller clusters discovered by k-means may be more useful, 
while for a general analysis one may prefer the coarse clustering result produced by the mean-shift. 
Also note that, the clusters discovered by k-means can be merged to obtain a lower number of clusters. 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Figure 8. The result of adaptive mean-shift clustering. 
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The ideal dataset for k-means or mean-shift clustering would consist of scenarios that are in clearly 
divisible groups which the algorithm can unambiguously identify as separate clusters. For this 
particular set of data, the cluster boundaries are not obvious, which makes it challenging to interpret. 
A cluster of interest must be chosen, typically based on an assessment of what properties would be 
attractive to a proliferator. For example, it is supposed that a proliferator would value a low probability 
of detection (DP) and a high probability of success (PS). From Fig. 7, the scenarios in the green cluster 
satisfy both of these criteria and may be a cluster of interest. The cluster is then analyzed to find what 
inputs tend to lead to a scenario’s inclusion in the cluster of interest. 
 
For any given target, the number of scenarios with each of the possible diversion rates is equal over 
the entire set. This is because every combination of targets and rates was used to create the set. For 
example, for the TRU Extraction process the proportion of scenarios with 0, 1σ, 2σ, and 4σ are 25% 
each across the entire set. In the cluster of green scenarios, the proportions are 17%, 26%, 27%, and 
31%, respectively. This upward skew indicates that despite a higher likelihood of detection a higher 
diversion rate at this target tends to lead to a scenario’s inclusion in the cluster of interest. The LWR 
SF Storage target has an opposite skew of diversion rates, suggesting that it is not conducive to a low 
DP and high PS. 
 
These insights, as well as others based on safeguard conditions, may be applied to efficiently allocate 
safeguarding resources for planned and existing facilities. 
 
 
5.  CONCLUSION 
 
In this paper, we examine and compare goodness-of-fit measures for automated estimation of number 
of clusters k in the k-means clustering algorithm. We observe that these measures tend to favor a 
higher number of clusters for the data of interest when compared to that of mean-shift and adaptive 
mean-shift. Noting that the k-means algorithm is more time efficient, we suggest that it can be a good 
alternative to mean-shift when the computational resources are limited. 
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