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Abstract: Reliable instrumentation earthquake data are considered limited compared to the long return 
period of earthquakes, especially the major events.  As a result, earthquake rate estimating could 
become unrealistic based on the limited earthquake observation with classical statistics algorithms. For 
example, given no M ≥ 6.0 earthquakes were recorded in the past 50 years, a best-estimate for the 
earthquake rate around the region should be zero, and such a zero estimate is considered unconvincing 
owing to the short observation period and long earthquake return periods.  In this paper, a Bayesian 
calculation is proposed to earthquake rate estimating and smoothing given a reliable, but relatively 
short, earthquake catalog compiled with instrumentation data recorded since the last century.  The key 
to this Bayesian application to engineering seismology is to utilize the observed rates in neighboring 
zones as the prior information, then updated with the likelihood function governed by the earthquake 
observation in a target zone.                    
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1.  INTRODUCTION 
 
Earthquake frequency or annual rate is an important parameter for earthquake analyses such as seismic 
hazard assessment.  Understandably, the most reliable approach to estimate the parameter is based on 
sufficient instrumentation data, such as an earthquake catalog compiled with instrumentation data in 
the past 100 years.  However, the data is considered a limited observation, compared to the long return 
period of earthquakes, especially the major events.  As a result, based on the classical statistics 
algorithms, the estimates on earthquake frequency would become unrealistic because the observation 
data are limited.  For example, given no M ≥ 6.0 events recorded in the past 100 years, a best-estimate 
annual rate for such an event would be equal to zero, which is somehow unrealistic and not 
convincing.   
 
Different from classical statistics algorithms relying on samples only, the Bayesian approach is to 
develop an estimate considering both the information from samples and from general prior knowledge.  
In the Bayesian terminology, the method is to update the prior probability density function (PDF) with 
the likelihood function from samples to develop a posterior PDF.  Next, a Bayesian estimate can be 
developed according to the posterior PDF, a result of general prior information and site-specific 
observations from samples. 
 
The Bayesian method is commonly used in a variety of studies, such as estimating dissolved oxygen in 
a river [1], evaluating the reliability of pile foundations [2], reconstructing a Synthetic Aperture Radar 
image [3], and quantifying the risk of offshore drilling [4].  In addition to those applications, the 
Bayesian approach was also used in earthquake engineering and engineering seismology, such as 
evaluating earthquake-induced slope failures [5], characterizing the structure’s vulnerability against 
earthquakes [6], and estimating the parameters of an active fault [7].  As a result, it is understood that 
the Bayesian approach is in a general framework, and the data used as prior information and likelihood 
function can vary case-by-case. 
 
This paper presents a new Bayesian application to engineering seismology, estimating and smoothing 
earthquake frequency in a region given a relatively short earthquake observation in a comparison to 
the long return period of earthquakes.  In addition to the methodology, a case study was also given as a 
demonstration example to this Bayesian application to earthquake rate estimating and smoothing.           
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2.  THE OVERVIEW OF THE BAYESIAN APPROACH 
 
As mentioned previously, the Bayesian approach is to develop a best estimate with multiple sources of 
data.  Take a discrete case for example (i.e., the prior probability density function is discrete), the 
algorithm of the Bayesian approach can be expressed as follows [8]: 
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where )( iP θ′  is the prior probability for an estimate iθ  in the prior probability mass function 
(PMF), )|( iP θε  is the likelihood function given observation ε , )( iP θ′′ is the posterior probability 
after updating, and n is the number of estimates in the prior PMF.  
 
An example was demonstrated in the following to help describe the Bayesian approach. First, the 
function shown in Fig. 1 is the prior PMF for M ≥ 6.0 earthquakes in a region, and the probabilities for 
annual rate v equal to 0.01 and 0.02 per year are 30% and 70%, respectively. Second, the observation 
data indicate no such events in the past 50 years were observed around the region.  As a result, in this 
case the likelihood function for v = 0.01 per year in this example can be calculated as follows: 
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It is worth noting that the calculation shown in Eq. 2 is on a customary presumption that earthquake 
occurrence follows the Poisson distribution [8], with its probability mass function defined as follows 
[8]: 
 

                                                           
!

)|(
x
vevxXP

xv−

==                  (3) 

 
where v is the mean rate or the mean value of the Poissonian random variable X.  
 
The same calculation can be applied to the likelihood function of the other estimate (i.e., v = 0.02 per 
year). Along with the two prior probabilities given in Fig. 1, therefore the prior probabilities and 
likelihood functions available, the two posterior probabilities for v = 0.01 and v = 0.02 can be updated 
with the Bayesian algorithm (i.e., Eq. 1) as follows: 
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Fig. 1 shows the posterior function for this example after the Bayesian updating. Accordingly, the 
Bayesian estimate (i.e., the mean value of the posterior PMF) is 0.016 per year for M ≥ 6.0 
earthquakes after the Bayesian updating, given the prior information and the limited observation in the 
past 50 years. 
 
 
3.  EARTHQUAKES WITHIN SUB-REGIONS 
 
For developing a more refined earthquake analysis, sometimes a region is further divided into a few 
sub-zones in an application. However, this practice would cause a challenge in the earthquake rate 
estimating because earthquake observation is also divided into a smaller sample size.  We made an 
example shown in Fig. 2 with the earthquake data around Taiwan to further explain this situation: For 
a pre-defined seismic source in southeastern Taiwan [9], the annual rate of ML ≥ 6.5 events (i.e., ML = 
local magnitude) could be around 0.036 per year given a total of 4 events recorded in the past 110 
years. However, after dividing the zone into nine sub-zones for some application, the rate for ML ≥ 6.5 
earthquakes in sub-zones S1, S4, S5, S6 and S9 should be zero, because no such events were observed 
within those zones during the time.  (Note that the earthquake data around Taiwan have been used in a 
few earthquake studies, including seismic hazard assessments and earthquake statistics analyses [9, 
10].  More details about the seismic source model and the earthquake catalog are available in those 
publications.) 
 
 

Figure 1: The prior and posterior PMFs in a demonstration Bayesian example  
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4.  A BAYESIAN APPLICATION TO EARTHQUAKE RATE ESTIMATING AND 
SMOOTHING 
 
As mentioned previously, the scope of this technical note is to provide a Bayesian application to 
estimate and smooth earthquake rates given limited data. In the following sections, we continued using 
the example (Fig. 2) around Taiwan to help explain and demonstrate this Bayesian calculation. 
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4.1. The methodology overview 
 
Essentially, any of a Bayesian calculation is to integrate prior information with observation data to 
develop a Bayesian estimate.  Because observation data are only available in this study, the key task in 
this Bayesian calculation is to develop some prior information and to integrate it with the observation.  
Under the circumstances, the analytical presumption in the development of the Bayesian calculation is 
to use the observations in neighboring areas as a source of prior information, one of the key 
presumptions in this study. 
 
4.2. The definition of “neighbors” 
 
Because the prior information is based on the observed earthquake rates in neighboring zones, the 
definition of “neighbors” needs clarified in the first place.  In short, two areas are considered 
“neighbors” as long as they are in contact with each other in any form.  Take Fig. 2 for example, S2, 
S4 and S5 are the neighbors of S1; S1, S3, S4, S5 and S6 are the neighbors of S2; and so on so 
forth….  
 

Figure 2: The observed ML ≥ 6.5 earthquake rates within a seismic source in southeastern Taiwan 
based on the seismicity in the past 110 years; the value in the parenthesis is the observed earthquake 

rate during the time [9, 10] 
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4.3. The prior probability mass function 
 
With the observed rates (denoted as v) in a target zone and in its neighboring zones, a prior PMF about 
earthquake rates in the target zone could be developed.  Take Fig. 2 for example, the observed rates 
for ML ≥ 6.5 earthquakes within S1, S2, S4 and S5 are 0, 1, 0, and 0 in the past 110 years.  Therefore, 
Fig. 3a shows the prior PMF for ML ≥ 6.5 earthquake rates in the target zone S1 based on the 
information from the four zones.  Accordingly, the prior probabilities are 75% and 25% for the two 
estimates v = 0 and v = 1, respectively.  In contrast, Fig. 4a shows the prior PMF for the center zone 
S5, with a prior probability of 56% and 44% for v = 0 and v = 1, respectively.  
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4.4. The updating 
 
With the prior and observation data available, then the Bayesian estimate can be developed.  In this 
case study demonstration, the target zone S1 has a prior PMF like Fig. 3a, and a zero-event 
observation for ML ≥ 6.5 earthquakes in the past 110 years. As a result, considering earthquake 
occurrence follows a Poisson distribution, the likelihood function for the estimate v = 0 can be 
calculated as follows:  
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The same calculation was then applied to the other estimate v = 1, and with the two prior probabilities 
and likelihood functions available, the posterior probability for v = 0 can be updated with the 
underlying Bayesian algorithm (i.e., Eq. 1) as follows: 
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where ε here denotes the observation that is no ML ≥ 6.5 earthquakes in S1 during the time.   
 
Repeating the calculations for the other estimate v = 1, its posterior probabilities can be calculated as 
well.  As a result, Fig. 3b shows the posterior PMF for ML ≥ 6.5 earthquakes within S1, and the 
Bayesian estimate on the earthquake rate is equal to 0.09 per 110 years, or 0.0008 per year, according 
to the posterior PMF. On the other hand, Fig. 4b shows the posterior PMF for the center zone S5. 
According to the posterior PMF, the Bayesian estimate on the rate of ML ≥ 6.5 earthquakes within S5 
is 0.18 per 110 years, equivalent to 0.002 per year.   
 
Figure 3: a) the prior probability mass function for two ML ≥ 6.5 earthquake rates for zone S1 (see Fig. 

2), and b) the posterior function after the Bayesian updating with no ML ≥ 6.5 observed in the target 
zone S1 in the past 110 years 
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In the two Bayesian calculations, we can see although the observed earthquake rates in S1 and S5 are 
both equal to zero, the updated Bayesian estimates are varied because the different prior information,  
or different “neighbors” of the two target areas. 
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4.4. The earthquake rate after the Bayesian smoothing 
 
With the updating repeated for the rest of the zones, the smoothing of the earthquake rate within a 
region could be achieved.  For this example using the earthquake data around Taiwan, Fig. 5 shows 
the smoothed rates for each of the nine sub-zones with the Bayesian approach.  It is worth noting that 
the total of the smoothed rates is equal to the observed rate, four events in total, based on the 
seismicity detected in the past 110 years. 
 
From this case study, we can see that now the estimates on earthquake rates become more realistic 
with the Bayesian calculation, rather than a zero-event estimate with the classical statistical algorithms 
based on limited observations available.  Therefore, the new Bayesian application to earthquake rate 
estimating and smoothing could be a useful option for earthquake studies, given the reliable 
earthquake instrumentation data are limited compared to the long return period of earthquakes, 
especially the major events.  

 
Figure 4: a) the prior probability mass function for two ML ≥ 6.5 earthquake rates for S5, and b) the 

posterior function after the Bayesian updating with no ML ≥ 6.5 events observed during the time  
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5. DISCUSSIONS 
 
5.1. Analytical presumption behind the Bayesian calculation 
 
An implicit analytical presumption behind the development of this Bayesian smoothing is that we 
weighted the observations differently for a given target zone. That is, we considered the observed rate 
in the target zone is more “reliable,” and it should play a heavier role in the calculation than those 
observed rates from neighboring zones.  As a result, we utilized the observed rate of the target zone in 
both the prior PMF and the likelihood function also governed by that observation.  In other words, the 
observed rate of the target zone was “double counted” in this Bayesian calculation for smoothing the 
earthquake rate in a region.   
 
5.2. On the proper use of the Bayesian approach 
 
Explicitly, observation data are more reliable than prior information from judgment, experience, etc.  
In other words, when observation data are in a large sample size, it is not necessary to take general 
prior information into account for developing a best estimate, also pointed out in other Bayesian 
studies in geotechnical site characterizations [11, 12].  To sum up, the purpose of using the Bayesian 
approach was to utilize some prior information to compensate the sample-size issue when 
encountered.  In other words, when the site was well investigated with sufficient site-specific data, the 
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classical algorithms relying on reliable observation data should be able to develop a representative 
estimate, without the involvement of general prior information.    
 
The same basics on the proper use of the Bayesian approach should be applied to this Bayesian 
calculation for earthquake rate estimating and smoothing.  For estimating large-earthquake rates like 
the demonstration example, the 110-year-long instrumentation earthquake data could be too limited to 
estimate the rates with classical statistics algorithms, considering the long return period of the large 
earthquakes.  By contrast, if the problem is to estimate small-earthquake rates such as ML ≥ 3.0 around 
Taiwan, the 110-year-long observation with 50,000 ML ≥ 3.0 events should be sufficient to develop a 
reliable estimate using the classical algorithms.    

 
Figure 5: The estimates on ML ≥ 6.5 earthquake rates for each of the nine sub-zones within a seismic 
source in southeastern Taiwan with the Bayesian calculation, based on the prior information from the 
neighboring zones and the likelihood function governed by the earthquake observation in the target 

zone 
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6. SUMMARY 
 
Owing to the long return period of earthquakes, one challenge in earthquake parameter estimating is 
the lack of a representative sample size.  As the demonstration examples using earthquake data around 
Taiwan, the limited observation could lead to an unrealistic “zero” estimate for earthquake 
occurrences, because of the relatively short period of observation compared to the long return period 
of earthquakes, especially the major events.   
 
Different from classical statistics algorithms, the Bayesian approach is to utilize both prior information 
and observation data to develop a best estimate, and it has been practiced in many studies especially 
when observation data are limited.  Like those Bayesian applications, this paper introduces a new 
Bayesian calculation for earthquake rate estimating and smoothing, given reliable, but limited, 
instrumentation earthquake data available.   
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The key to this Bayesian calculation includes the use of the observed earthquake rates in neighboring 
zones as the prior information, and “double counting” the earthquake observation in a target zone 
during the Bayesian updating.  In terms of the result, the Bayesian calculation can develop a more 
realistic estimate on earthquake rates rather than zero, with limited instrumentation earthquake data.  
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