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Abstract: The aggregation of hardware components to add recovery capabilities to a system function 

may result in high costs. Instead of adding redundancies with homogeneous nature aimed at providing 

recovery capabilities to a predefined system function, there is room in some scenarios to take 

advantage of over-dimensioning design decisions and overlapping structural functions using 

heterogeneous redundancies: components that, besides performing their primary intended design 

function, restore compatible functions of other components. 

 

In this work, we present a methodology to evaluate systematically the effect of failures of alternative 

redundancy and reconfiguration strategies, fault detection, and communication implementations on 

system dependability. To this end, a modeling approach called Generic Dependability Evaluation 

Model and its probabilistic analysis paradigm using Component Dynamic Fault Trees are presented. 

Application to a railway example is presented showing tradeoffs between dependability and cost when 

deciding to implement possible redundancy and reconfiguration strategies. Finally, details of the 

experiment prototype implemented using real railway communication elements are described so as to 

validate the design concepts treated throughout the paper. 

 

Keywords: Heterogeneous redundancies, Dependability, Design methodology, Monte Carlo 

simulations, Cost reduction. 

 

1. INTRODUCTION 
 

Traditional design strategies to improve fault tolerance of a system are based on the replication of 

hardware components in redundancy configurations. Generally the nature of the backup components is 

homogeneous, i.e., they provide recovery capabilities to a predefined system function; accordingly 

they are known as homogeneous redundancies. 

 

However, in some scenarios, it is possible to make use of heterogeneous redundancies, consisting of 

components that, besides performing their primary intended design function, are able to restore 

compatible functionality of other components. This is the case of Massively Networked Scenarios 

(MNS), systems characterized by several replicas of system functions throughout the physical 

structure, e.g., a train has replicated functions throughout its cars; a building has replicated functions 

throughout its floors and rooms. Nowadays, in such architectures, the comparison between 

homogeneous and heterogeneous redundancies is gaining the interest of researchers and industrial 

stakeholders. In fact, design strategies based on heterogeneous redundancies have shown potential to 

improve system dependability cost-effectively [1, 2, 3]. 

 

In previous work [4], an adaptive dependable design methodology, the D3H2 (aDaptive Dependable 

Design for systems with Homogeneous and Heterogeneous redundancies), for the dependability 
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assessment of MNS was presented. Applying modeling and analysis techniques, the methodology 

identifies heterogeneous redundancies systematically; integrates redundancies in the extended HW/SW 

architecture supporting necessary functions and implementations including reconfiguration, fault 

detection, and communication; and performs dependability and cost analyses of the extended HW/SW 

architecture. In this paper, we present an extension of the methodology overcoming previous static 

logic limitations by means of Generic Dependability Evaluation Model (GDEM) and Component 

Dynamic Fault Trees (CDFTs), and quantify the effect of the failure of redundancy and 

reconfiguration strategies on the extended HW/SW architecture. The GDEM defines failure 

relationships between system functions and implementations and allows identifying systematically the 

combinations of faults that lead the extended HW/SW architecture to fail; while the CDFT enables the 

probabilistic assessment of the GDEM. Besides, importance measurements are performed to obtain 

robustness indicators of design strategies. To test the feasibility of the approach, its key design 

concepts are implemented in a practical case of the railway industry: reconfiguration capabilities have 

been added to hardware train network components to reuse already existing elements. 

 

Related Work: The evaluation of the influence of design decisions on dependability and cost is an 

ongoing research challenge. While many works have concentrated on addressing the influence of 

homogeneous redundancies on system dependability and cost, approaches focusing on the evaluation 

of the influence of heterogeneous redundancies on system dependability are scarce. 

 

The concept of heterogeneous redundancies have been addressed in the literature with different names 

but with the same underlying design goal: reuse of system components to provide a compatible 

functionality. Shelton and Koopman worked on the concept of functional alternatives [1]; Wysocki 

and Debouk presented a methodology for assessing architectures using shared redundancies [2]; and 

Adler et al. presented a methodological support for characterizing an adaptation model while meeting 

availability-cost requirements [3]. However, to fully exploit the potential of heterogeneous 

redundancies without incurring in additional penalties on the system architecture, there exist 

assumptions and activities that should be addressed: (1) identification of heterogeneous redundancies 

should be done systematically rather than relying only on the ability of the designer; (2) the use of 

homogeneous/heterogeneous redundancies in MNS requires fitting the system with health 

management implementations, i.e., fault detection (FD) and reconfiguration (R). Consequently, 

alternative health management strategies and their influence on dependability should be addressed so 

as to avoid unexpected consequences. For further details and discussion in this area see [5]. 

 

Contribution and overview of the paper: as a result, with respect to relevant approaches, we 

propose a methodology that: (1) identifies systematically heterogeneous redundancies and integrates 

them in the system architecture; (2) constructs alternative system architectures comprehending 

different redundancy and reconfiguration strategies; and (3) performs the dependability assessment of 

system architectures systematically and exhaustively with the goal of extracting design indicators and 

identifying weaknesses and strengths of the analyzed system architectures. The remainder of this paper 

is organized as follows: Section 2 overviews the D3H2 methodology and introduces the application 

example; Section 3 describes in detail the dependability analysis within the D3H2 methodology, and 

its application to a railway example; Section 4 validates D3H2’s design concepts in a experiment 

prototype; and finally, Section 5 presents conclusions and our future research goals. 

 

2. D3H2 METHODOLOGY: OVERVIEW & APPLICATION EXAMPLE 
 

In this section we present an overview of the main activities of the D3H2 methodology [4] and apply 

them to an application example.  

 

2.1. Overview 

 

The D3H2 methodology characterizes a system of interest as a set of HW, SW, and communication 

components taking into account their interfaces and provided functionality. The main goal of D3H2 

methodology is to create a system architecture that meets dependability and cost requirements, and 
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evaluate the influence of redundancy (homogeneous, heterogeneous) and reconfiguration (centralized, 

distributed) strategies on system dependability and cost systematically (see Figure 1). The 

methodology integrates the following main modeling and analysis activities: 

(1) Construction of the functional model based on the next tokens: (1) Main Function (MF) (e.g., 

Temperature Control); (2) the Physical Location (PL) in which the MF is performed; (3) 

necessary set of input (I), control (C) and output (O) Subfunctions (SFs) to perform the MF (e.g., 

Temperature Measurement); and (4) implementations of the SF characterized by the HW, SW, 

and communication resources they use and ordered with respect to their implementation priority. 

(2) Compatibility analysis: systematic identification of heterogeneous redundancies based on the 

physical location of the SF and the compatibility of the SF they perform; and extraction of 

reconfiguration strategies and priorities. 

(3) Construction of the extended HW/SW architecture by adding health management 

implementations to the preliminary HW/SW architecture, i.e., fault detection (FD_SF), 

reconfiguration (R_SF), and reconfiguration’s fault detection (FD_R_SF) implementations. 

(4) And finally, dependability and cost analysis of the extended HW/SW architecture to validate 

dependability and cost requirements. The ins and outs of these activities are described in [4]. 

Figure 1: D3H2 Methodology [4] 

 

Figure 2: Train Car and Network Structure 

 
 

 
 

2.2. Application Example 

 

In this subsection, we apply and describe the D3H2’s main activities in an application example of the 

railway industry. Namely, we concentrate on analyzing Fire Protection Main Function and possible 

heterogeneous redundancies arising from the analysis of a train car. 

 

System: in the studied train car fire detectors are distributed strategically to detect a fire. Usually, 

there is a fire detector (smoke sensor) for each train car’s compartment (see ZoneA - ZoneB in Figure 2) 

and an emergency button for passengers. Potential fire conditions are validated by a fire control 

algorithm and if confirmed, sprinklers neutralize the hazardous situation. 

 

Functional Model: among different Main Functions performed in a train car (cf. Table 1), the 

functional model of the Fire Protection and part of the Main Functions located at compatible physical 

location are described (Fire Protection and Temperature Control). There exists other Main Functions 

located at the same physical location, but for the sake of clarity, we have not taken them into account. 

 

Compatibility Analysis & Reconfiguration Strategies: the compatibility analysis is based on 2 

compatibility cases: (1) implementation of the same SF in compatible PLs; and (2) different SF’s I/O 

implementations located at compatible PL. The first case is performed automatically comparing SFs 
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and PL, while the second case requires evaluating if they may fulfill additional compatible SFs. From 

the second case, the compatibility analysis automatically suggests a list of implementations located at 

a Fire Protection’s compatible PL (Train.Car1.ZoneA) and the designer intuitively finds a temperature 

sensor able to indicate the presence of fire using temperature value thresholds (see grey cells at the 

functional model in Table 1) (see [4] for more information of the compatibility analysis). 

 

Extended Functional Model (EFM): based on design decisions, the EFM is constructed by adding 

necessary fault detection and reconfiguration mechanisms to the SFs with redundant implementations 

to evaluate their influence on dependability and cost. For instance, the extended HW/SW architecture 

shown in Table 2 is based on a model with single FD_SF, duplicated R_SF implementations, and each 

R_SF implementation with its FD_R_SF implementation. 

Table 1: Functional Model 

MF PL SF Resources 

Fire  

Protection 

Train. 
Car1. 

ZoneA 

User Emerg. 

Signal (UES) 

Emergency Button, 

SWUES, PU1 

Fire Detection  
Fire Detector, 
SWFireDet, PU1 

Fire Control 
UES, Fire Detection, 

PU1, SWFireControl 

Fire Extinction  

Fire Control, PU1, 

SWFireExtinction, 

Sprinkler 

Temp. 

Control 

Train. 

Car1. 
ZoneA 

Temperature 

Measurement 

Temperature Sensor, 

SWTemp, PU2 

… … 

 

 

 Heterogeneous Redundancies (Semi-Automatic) 

 Health Monitoring Implementations (Systematic) 

o FD_SF, R_SF and FD_R_SF 

Table 2: Extended HW/SW Architecture 

MF PL SF Resources 

Fire 

Prot. 

Train. 
Car1. 

ZoneA 

UES Emergency Button, SWUES, PU1 

Fire 
Detection 

Fire Detector, SWFireDet, PU1 

Temperature Sensor, SWFireDet, PU2, 

Comm. CAN, Comm. ETH, GWETH-CAN 

FD_FireDet 
PU1, SWFD_FireDet, 

Comm. CAN, Comm. ETH, GWETH-CAN 

R_FireDet PU1, SWR_FireDet, Comm. CAN 

R_FireDet 
PU2, SWR_FireDet,  

Comm. CAN, Comm. ETH., GWETH-CAN 

FD_R_FireDet 
PU2, SWFD_R_FireDet, 

Comm. CAN, Comm. ETH, GWETH-CAN 

FD_R_FireDet 
PU1, SWFD_R_FireDet, 

Comm. CAN, Comm. ETH, GWETH-CAN 

Fire Control 
UES, Fire Detection, PU1, SWFireControl, 
Comm. CAN, Comm. ETH, GWETH-CAN 

Fire Extinction 
Fire Control, SWFireExtinction, PU1, 

Sprinkler 
 

 

As for the dependability analysis, in [4] we focused on automating all the D3H2 activities using the 

Component Fault Tree paradigm [6], keeping the traceability between the dependability model and 

extended HW/SW architecture as manageable as possible. However, so as to adhere to the extended 

HW/SW architecture’s dynamic failure logic, it is necessary an approach which captures systems 

dynamic failure logic and does not hamper the readability of the dependability model. Hence, to 

address these goals, Section 3 defines compositional Generic Dependability Evaluation Model 

(GDEM) and Component Dynamic Fault Tree (CDFT) paradigms. 

 

3. D3H2 METHODOLOGY: DEPENDABILITY ANALYSIS 
 

The key introductory concepts for dependability analysis are defined in § 3.1. Then, the GDEM (cf. § 

3.2) and its analysis approach based on CDFTs (cf. § 3.3) are defined. 

 

3.1.  Concepts and Notation 

 

The objective of the GDEM is the generic, systematic and complete failure modeling of extended 

HW/SW architectures. The failure model of the extended HW/SW architectures comprehends the 

possible failure modes of its implementations: FD implementations (FD_SF, FD_R_SF) fail in 

omission (O) when it does not detect a failure when it occurs and false positive (FP) when it detects a 

failure when it does not exist; the reconfiguration (R) implementation fails in omission when it fails to 

reconfigure an implementation when it is required; and failure of SF implementations cover omission 

and wrong value failure modes. 

 

The failures of all system subfunction implementations (SF, FD_SF, R_SF, FD_R_SF) are defined at 

the implementation level (i.e., [MF].[PL].[SF].[Impl] Failure) according to the failures of the 

implementation’s resources. Combining implementation level failures, SF level failures are defined 
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systematically ([MF].[PL].[SF] Failure). For the sake of clarity, in subsequent characterizations we 

omit the generic common part ([MF].[PL]). Table 3 defines the notations of the failure events and 

working events according to their SF and failure modes (omission and false positive). 

 

Table 3: Notation of Failure and Working Events 

Notation Failure Logic   Notation Failure/Working Logic 

FX X failure  FR [R_SF] failure 

FSF [SF] failure  FR
i
 O [R_SF].[Impli] omission 

FSF
i
 [SF].[Impli] failure  FFD_R

i 
FP [FD_{[R_SF].[Impli]}] false positive 

FFD
i
 [FD_SF].[Impli] failure  FR

i 
O/FP [R_SF].[Impli] omission or FP = OR(FR

i
 O, FFD_R

i
 FP) 

FFD [FD_SF] failure  FFD_R
i
 [FD_{[R_SF].[Impli]}] failure 

FFD FP [FD_SF] false positive  WX X working 

FSF
i
 FP [SF].[Impli] failure or FP = OR(FSF

i
, FFD FP)  WSF

i
 [SF].[Impli] working = NOT(FSF

i
) 

FFD
i 

O [FD_SF].[Impli] omission    

 

The stochastic failure characterization of each resource is characterized randomly sampling the failure 

times according to their cumulative probability distribution functions (CDFs) along the system 

lifetime. The methodology supports any CDFs, but for the sake of simplicity, without losing the 

generality of the approach, in subsequent probabilistic characterizations exponential failure 

distributions are assumed. Hence, the failure characterization of system resources is defined according 

to their failure rates (λRes). The failure characterization of a SF’s i-th implementation ([SF].[Impli]) 

with N resources is specified as follows: 

 FSF
i
 = OR(FRes

1
, FRes

2
, …, FRes

N
)  (1) 

 

The same characterization holds for FD_SF, R_SF, and FD_R_SF implementations.  

 

3.2. Component Dynamic Fault Trees (CDFT) 

 

To quantify the failure probability of the GDEM, we have analyzed existing dynamic and 

compositional fault tree paradigms looking for the following characteristics: (1) component-based 

failure characterization: embed the failure logic of a set of related events/components and (re)use it 

where needed instead of characterizing the system failure behavior in a single flat model; (2) dynamic 

gates: capture the system failure logic accounting for the time-ordered events; (3) NOT gates: address 

the influence of functional (NOT failed) events; (4) support for any probability density function; (5) 

possibility of modeling repeated Basic Events (BEs); and (6) repeated components. 

 

The integration of static fault trees and compositional characterization is not new: Component Fault 

Trees [6] addressed this concept prominently. However, to the best of our knowledge, there is no 

approach which addresses explicitly the integration of DFTs and component oriented characterization. 

There exists combinations of combinatorial and state-based approaches which do address the 

compositional characterization (e.g., [7]), but state-based approaches are not considered in this work in 

order to avoid possible state explosion and manageability issues. 

 

Addressing all the aforementioned characteristics, we define the concept of Component Dynamic 

Fault Trees (CDFTs): while a BE characterizes self-contained simple failure logic, a component 

encloses any-complexity failure logic (with possibly multiple I/O dependencies) specified using BEs, 

gates, and even further components. The CDFT paradigm makes it possible to embed in a component 

the dynamic failure logic of a (sub)system and (re)use it where needed addressing repeated 

components and repeated BEs. Figure 3 characterizes a hypothetical CDFT model with repeated 

components (C2) and CDFT gates. Each component (C1, C2) may have as inputs further gates, or 

(repeated) BEs and/or other components. The behavior of the CDFT gates are characterized according 

to its inputs events (A, B), which are extendible to an arbitrary number of input events. 
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Figure 3: Component Dynamic Fault Tree Overview 

 
 

To implement the CDFT paradigm and analyze the (un)reliability of a system, Monte Carlo 

simulations are performed on the system’s CDFT structure calculating the time to failure of BEs 

according to their cumulative probability distribution function. Connected gates/components use this 

information to determine their outcome (functional or failed state). When a failure at the output of a 

gate/component occurs, the failure time information is passed to the next gate/component so that the 

system’s dynamic failure logic is tracked from BEs to system-level Top Event (TE). The logic of 

CDFT gates comprehend combinatorial (AND, OR, NOT) and time-ordered (PAND) failure logic. To 

analyze CDFTs, the MatCarloRe tool [8] has been extended with NOT gates. 

 

3.3.  Generic Dependability Evaluation Model (GDEM) 

 

The GDEM defines the generic but implementable dependability evaluation algorithm, defining the 

dynamic failure behavior of systems which use fault detection and reconfiguration implementations 

covering all possible failure situations for the specified HW/SW architectures. It allows evaluating 

design decisions consequence on system dependability. Resulting equations characterize the failure of 

such systems compositionally so that the failure logic is kept clear for complex systems. 

 

To this end, the GDEM characterizes combinations of SF’s implementation failures that prevent the 

extended HW/SW architecture from performing its intended MF. The failure of any SF necessary for a 

MF provokes its immediate failure. Hence, from this point onwards we will analyze the failure of a 

SF. The subfunction will fail when all its implementations have failed (FAll Impl.), an implementation 

fails and reconfiguration does not happen (failure unresolved, FUnresolved), or its input dependencies 

(FDependencies) have failed (cf. Equation 2): 

 FSF = OR(FAll Impl., FUnresolved, FDependencies) (2) 

 

Assuming that there exist M implementations of the subfunction, the FAll Impl. event happens when each 

implementation fails or is detected as failed (false positive): 

 FAll Impl. = AND(FSF
1

 FP, ..., FSF
M

 FP) (3) 

 

The failure unresolved (FUnresolved) occurs when the working implementation fails and either the fault is 

not detected or the reconfiguration itself fails. For each implementation there are different failure 

unresolved events (FUnr. Impl
i
) because each implementation may have different failure probabilities, 

however, note that the last implementation’s failure probability can not be solved: 

 FUnresolved = OR(FUnr. Impl
1
, ..., FUnr. Impl

M-1
) (4) 

 

To define FUnr. Impli
, let us introduce two new events. The first event occurs when the i-th 

implementation of the subfunction fails and the reconfiguration has failed but after successfully 

reconfiguring previous i-1 implementations (reconfiguration sequence failure, FR Seq.
i
). Assuming 

FSF
1..i-1

 FP = AND(FSF
1

 FP, ..., FSF
i-1

 FP) indicates the failure or false positive from 1 to i-1 implementations: 

 FR Seq.
i
 = PAND(FSF

1..i-1
 FP, FR, FSF

i
 FP) (5) 
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The second event occurs when the i-th implementation of the SF fails and the fault detection of the SF 

has failed but after detecting correctly previous i-1 implementations failures (fault detection sequence 

failure, FFD Seq.
i
). Note that fault detection’s false positive and omission failures are mutually exclusive: 

 FFD Seq.
i
 = PAND(FSF

1..i-1
, FFD, FSF

i
) (6) 

 

Due to the characterization of time-ordered failures, Equations 5 and 6 can not be further simplified. 

Accordingly, i-th implementation’s failure unresolved event (FUnr. Impli
) occurs when either the fault 

detection sequence (FFD Seq.
i
) or the reconfiguration sequence (FR Seq.

i
) fails: 

 FUnr. Impl
i
 = OR(FR Seq.

i
, FFD Seq.

i
) (7) 

 

Dependencies address Input (I) and Control (C) subfunctions influence on control and Output (O) SFs 

respectively. Control SF failure impacts the output SF failure directly (CO); and the influence of 

input SF on control SF depends if the system’s control configuration is operating in Closed Loop 

(C_CL) or Open Loop (C_OL): 

 FDependencies = OR(F
Dep. C_CL

, F
Dep. C_OL

) (8) 

 

Assuming that WC_X = OR(WC_X
1
, …, WC_X

Q 
) means that all Q implementations of C_X subfunction are 

working, equations in 9 describe the different input subfunctions that affect each control configuration 

(I_CLC_CL, I_OLC_OL). Usually, the F
Dep. C_OL

 event will not happen because the open loop 

control generally does not have input dependencies: 

 FDep. C_CL = AND(WC_CL, FI_CL)                     FDep. C_OL = AND(WC_OL, FI_OL) (9) 

 

The reconfiguration failure is a special subfunction and therefore FR is developed like Equation 2, 

except that there are no additional dependencies: 

 FR = OR(FAll R Impl., FR Unresolved) (10) 

 

FAll R Impl. indicates the failure of all reconfiguration implementations, and FR Unresolved designates the 

reconfiguration’s failure unresolved condition. Assuming P reconfiguration implementations: 

 FAll R Impl. = AND(FR
1 

O/FP, ..., FR
P 

O/FP) (11) 

 

FR Unresolved event happens when P-1 implementations of the FD_R subfunctions fail: 

 FR Unresolved = AND(FFD_R
1
, ..., FFD_R

P-1
) (12) 

 

Equation 12 boils down to our design choice: all reconfiguration’s fault detection implementations 

(FD_R_SF) are active and homogeneous redundancies (heartbeat implementation). Accordingly, the 

false positive occurs when all FD_R_SF implementations raise the false positive condition 

simultaneously. Although the system may operate correctly when a false positive occurs, it has to 

assume that the information provided by the fault detection implementation is correct, since there is no 

mechanism to detect the incorrect operation of fault detection. 

 

The fault detection failure FFD depends on the operation of the destination subfunction (SFDEST), 

because the FD implementation is located at the same PU. Hence, FSF_DEST influences directly FFD. 

When the FD implementation fails, the change of SFDEST’s implementation determines its 

reconfiguration. We assume that the change of destination SF’s implementation activates the 

corresponding FD implementation and the previous one is deactivated. Equation 13 describes the 

FD_SF failure case when FD_SF has K implementations: 

 FFD = OR(FFD_Dest
1
, ..., FFD_Dest

K
) (13) 
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As for the i-th fault detection implementation’s failure (FFD_Desti
), it happens when the first 1 to i-1 

implementations of the destination SF fail and reconfigure correctly (FSF_DEST1..i-1
), and then the i-th 

implementation of the fault detection or destination SF fails:  

 FFD_Dest
i
 = PAND(FSF_DEST

1..i-1
, OR(FSF_DEST

i
, FFD

i 
O))  (14) 

3.4. Experiments 

 

Based on the example described in Section 2, simulations are performed to evaluate the influence of 

redundancy and reconfiguration strategies on system’s (un)reliability and cost. The cost of health 

monitoring SW components (SW_HM: SW_FD, SW_R, SW_FD_R) is quantified considering their 

development cost. Regarding their λ values, hypothetical reasonable values are assumed, considering 

them lower than less critical components’ failure rates. The assessment of the reliability and cost of 

SW components is outside the scope of this work, see [9] for an application on SW reliability 

methods. Regarding sensor’s cost, human cost related with mounting and testing tasks is considered 

assuming 10 minutes/sensor. PU element characterizes all PU elements, and communication includes 

CAN and Ethernet communication protocols and their gateway. We are aware that the cost of SW 

components is greater than adding sensors, but in this example it has been assumed that SW 

development costs will be paid off in 4 years.  

 

Table 4: Failure Rates & Cost of HW/SW/Communication Components 

Component Fail. Rate (year
-1

) Cost (€) 

SW_HM and SW_FD_FP 1 E-2 80 each 

Fire Detector [10] / Temp. Sensor [11] 3.77 E-2 / 1.49 E-2 20 + 60€/hour / - 

PU [9] 3.87 E-2 30 

Communication and Gateway 5 E-3 200 

 

Figure 4 describes Fire Protection configurations’ relative unreliability and cost with respect to the 

configuration without redundancies described in Table 1. Alternative extended HW/SW architectures 

are analyzed adding a heterogeneous redundancy (HeR) (see Table 2) or homogeneous redundancy 

(HoR) to the Fire Detection SF. In case of homogeneous redundancies, the fire detector has been 

replicated with 2 alternative configurations: connect both fire detectors to PU1 (HoR A) or connect 

each fire detector to a different PU (HoR B). As Figure 4 shows, heterogeneous redundancies are more 

economical than homogeneous redundancies and their unreliability is slightly higher than 

homogeneous redundancies due to the added mechanisms (SW) to make implementations compatible. 

 

Figure 4: Relative Unreliability and Cost of Fire Protection Configurations (10
6
 iterations) 

 
 

To analyze further the differences between HoR and HeR, the Failure Criticality Index (FCI) 

evaluation has been implemented [12] calculating for the component i: the ratio between the number 

system failures caused by component i to the total number of system failures. Table 5 shows the 

impact of the failure of redundancy and reconfiguration (centralized, distributed) implementations on 
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the Main Function failure. The shown values are the influence on the Fire Protection MF of Fire 

Detection SF’s redundancy (FFireDet
2
) and its reconfiguration strategies (logic sum of FR Seq.

1
 and FR Seq

2
). 

 

Table 5: Failure Criticality Index Values (10
6
 iterations) 

Causes\Configs. HoR A – Cen. HoR B – Cen. HeR – Cen. HoR A – Dist. HoR B – Dist. HeR – Dist. 

Redundancy type 0,339027 0,174606 0,179927 0,276643 0,154960 0,170669 

Reconfiguration  0,177554 0,171728 0,174496 0,114232 0,107315 0,106994 

 

FCI values provide indicators about bottleneck influences on system (un)reliability: heterogeneous and 

homogeneous B redundancies perform better than homogeneous A redundancy configuration due to 

the bottleneck influence on causing the top event, i.e., PU1 performs as a common cause failure and its 

failure incurs the simultaneous failure of other SF implementations. The same logic applies to the 

reconfiguration distribution strategies: distributed reconfiguration implementations perform better than 

centralized implementations due to the bottleneck influence on system (un)reliability. 

 

4. VALIDATION OF THE D3H2 METHODOLOGY: PROOF OF CONCEPT 
 

To proof the feasibility of the D3H2 methodology in real applications, a key application concept in our 

methodology has been validated: we have added reconfiguration capabilities to existing hardware train 

network components to recover the system from failures at runtime using heterogeneous redundancies. 

 

Trains have a standard form of data communication specified in the Train Communication Network 

(TCN) standard [13]. TCN is a real-time data network comprised of an architecture inter-connecting 

train vehicles and equipments within a vehicle. The TCN standard specifies Wire Train Bus (WTB) 

for the inter-connection of vehicles and Multi-function Vehicle Bus (MVB) for intra-vehicle device 

communication. In this work we focus on the communication within a vehicle using MVB.  

 

MVB operates in master-slave configuration connecting devices in a vehicle. Class 2 or higher devices 

are considered: intelligent devices participating in the message communication with administration 

capabilities or connected I/O elements. The master guarantees deterministic medium access managing 

periodic and sporadic access to the bus. The communication in MVB follows the publisher/subscriber 

paradigm: a publisher broadcasts variables and this information is distributed to the subscribers. To 

this end, a traffic store is implemented; each device holds the variables it produces/consumes in a 

shared memory that is a partial copy of the whole network’s distributed database. 

 

As for the implementation of the reconfiguration process, we identify two phases: construction of the 

reconfiguration table, i.e., statically/dynamically determined reconfigurations; and activation of 

reconfiguration strategies, i.e., design-time/runtime reconfigurations. Dynamic resolution of the 

reconfiguration table allows gaining flexibility, but requires exploring the architecture dynamically. 

For safety and predictability purposes, statically determined reconfiguration design decisions are 

adopted. Regarding the (de)activation of reconfiguration strategies, while design-time 

reconfigurations reduce design complexity, runtime reconfigurations reduce processing cost and 

bandwidth overhead activating redundant communication threads exclusively when their need arises. 

 

In a train there are safety-critical functions which must meet hard real-time constraints (e.g., door 

control) and some of these functions are transmitted through MVB. Besides, other communication 

protocols coexist in the train; for instance, Ethernet communication protocol transports non-critical 

infotainment data. Ethernet provides more flexibility to perform architectural modifications at runtime 

at the expenses of losing predictability with respect to MVB. There exist other communication 

networks in a train (e.g., CAN), but this proof of concept has been focused on MVB and Ethernet. 

 

Therefore, the following design decisions have been adopted: MVB has been used for design-time 

reconfigurations and runtime reconfigurations have been implemented in Ethernet. On one hand, 

design-time reconfigurations in MVB are performed by assigning reconfiguration routes at design-
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time and activating them from the outset. The bandwidth consumption of these redundant 

communications is constant and their processing is activated solely when their need rise up. On the 

other hand, (dynamic) runtime modifications in Ethernet are effectuated using UDP communication 

threads in client-server-like configurations. Communication threads are created and deleted as their 

need arises, so that the bandwidth and processing costs increase exclusively in case of reconfiguration. 

 

The following reconfiguration scenarios (SC) have been tested: (SC1) sensor-level heterogeneous 

redundancy reconfigurations; (SC2) communication-level heterogeneous redundancy reconfigurations; 

and (SC3) processing unit-level homogeneous redundancy reconfigurations. 

 

Two additional reconfiguration attributes define the reconfiguration space of these scenarios: 

reconfiguration granularity comprehends node or task level reconfigurations, indicating 

implementation’s reactivation by changing the whole PU and its allocated tasks, or a single task 

respectively. Reconfiguration object addresses SW, HW and communication (Comm.) level 

reconfigurations: SW reconfigurations modify the SW implementation changing its parameters or 

structure; HW reconfigurations involve changing the complete HW device; and communication 

reconfiguration modifies nominal communication routes with alternative ones. Figure 5 describes the 

reconfiguration space of the tested scenarios: SC1 deals with sensor failures using communication 

level reconfigurations, SC2 switches the communication protocol to handle communication failures, 

and SC3 replaces the PU and communication routes to cope with PU failures. For instance, all the 

scenarios perform task-level and communication-level reconfigurations, but only SC3 addresses node-

level and communication-level reconfigurations. 

Figure 5: Reconfiguration Space 

 
 

SC1: without losing the applicability of the scenario, SC1 focuses on the example presented in [14]. A 

train car vehicle may have different compartments (cf. Figure 6 ZoneA - ZoneB) and independent 

Temperature Control Main Function implementations at each compartment. Assume that 2 PUs are 

connected to perform the Temperature Control in each vehicle’s compartment: one PU (PU1 or PU3) 

measures the temperature (SF1: TempMeasure) using a sensor (S1 or S2) and gets the reference 

temperature (SF2: RefTemp) using a reference button (R1 or R2), and the other PU (PU2 or PU4) acts as 

a controller (SF3: TempControl) and actuator (SF4: Heating) heating the compartment using heaters 

(H1 or H2). TempMeasure’s nominal communication route (Rt) in each compartment is as follows: 

Rt1: S1PU1ETHPU2H1; Rt2: S2PU3ETHPU4H2. Given that one sensor of any 

compartment fails, we reuse the already existing one in the same car, but in different compartment. 

Figure 6: Reconfiguration Scenarios 

 
 

Focusing on the reconfiguration of TempMeasure at Car1.ZoneA, its value-based fault detection is 

located in the destination PU2. When incorrect values are received at PU2, the reconfiguration 

implementation (located with the TempMeasure’s fault detection), acknowledges to the faulty 
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component so that it stops sending data. The reconfiguration implementation checks the IP address 

and the UDP port of the next priority implementation of TempMeasure in its reconfiguration table, 

establishing the communication with S2. This process changes the communication route from Rt1 to 

Rt12: S2PU3ETHPU2H1. The design of the devices identified as heterogeneous redundancies 

enables them to redirect their information to different information sinks dynamically when a 

reconfiguration signal is received. During the reconfiguration, source and sink PUs synchronize and S2 

continues sending data towards PU2 until S1 is restored. Implemented reconfiguration mechanisms are 

applicable to input SF implementations operating with heterogeneous redundancies (e.g., Fire 

Protection example). MVB reconfigurations apply the same process, with the difference that Rt12 is 

activated from the outset. 

 

SC2: since a train incorporates different communication protocols, there is room to benefit from 

heterogeneous redundant communications. Despite bidirectional communications have been 

implemented between PU1 and PU2, for simplicity the following unidirectional routes are considered: 

Rt1: T1.MVBPU1MVBPU2; Rt2: T1.ETHPU1ETHPU2 where T1.MVB and T1.ETH 

identify MVB and Ethernet tasks respectively (cf. Figure 6). When a communication link is down, the 

general communication-level reconfiguration process is as follows: (1) the application located in the 

sink PU detects the communication failure (time-based fault detection), (2) subsequently, it 

reconfigures itself creating a server to continue receiving data using the operating communication 

protocol, and (3) it informs the source PU about the communication failure; (4) finally, the source PU 

is also reconfigured switching from the faulty to the operative communication. Hence, when MVB is 

disconnected (SC2.A, cf. Figure 6), UDP communication threads are created dynamically to continue 

sending MVB data via Ethernet changing communication routes from Rt1 to Rt12, where 

Rt12: T1.MVBPU1ETHPU2; and vice versa, when Ethernet is disconnected (SC2.B, cf. Figure 6) 

the communication route is changed from Rt2 to Rt22, where Rt22: T1.ETHPU1MVBPU2. 

 

SC3: point to point unidirectional communication from PU1 to PU2 is considered with the next 

communication routes: Rt1: T1.MVBPU1MVBPU2; Rt2: T1.ETHPU1ETHPU2. The tasks 

that PU1 is performing are rearranged in another compatible PU to deal with PU1 failures. A higher 

level reconfiguration implementation (PUR) has been added to redirect all the data that the failed PU 

was sending from its communication interfaces. PUR monitors the performance of both PUs (PU1, 

PU2) and when it detects that any of them is down (time-based fault detection); it is reconfigured 

sending the data that was sending before through MVB and Ethernet. Consequently, Rt1 is replaced by 

Rt12: T1.ETHPURETHPU2; and Rt2 switches to Rt22: T1.MVB PURMVBPU2. 

 

All in all, the integration of the three scenarios in a single architecture results in a fault-tolerant 

architecture which copes with sensor, communication and PUs failures reusing already existing 

elements. Note that these scenarios have been tested isolated from the other functions comprising a 

real train, and hence, we do not have to deal with possible memory and bandwidth issues. 

 

5. CONCLUSIONS & FUTURE GOALS 
 

In massively networked scenarios there is room to optimize system architectures to improve system’s 

dependability and reduce the overall cost. The proposed methodology provides the designer with 

indicators to support tradeoff design decisions between dependability and cost when deciding to 

optimize the use of system resources and allocation of system tasks on Processing Units (PUs). 

Generic Dependability Evaluation Model and Component Dynamic Fault Trees have been presented 

as a means to perform tradeoff analyses between dependability and cost, evaluating the influence of 

alternative redundancy and reconfiguration strategies. 

 

Heterogeneous redundancies reuse system resources to provide compatible functionalities to a system 

function. Conversely, homogeneous redundancies add additional resources to replicate system 

functions. In the developed application example heterogeneous redundancies reduce the overall cost 

and improve system dependability with respect to the architecture without redundancies, while 

performing almost as well as homogeneous redundancies. Regarding the allocation of tasks on PUs, 
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the impact of centralized and distributed reconfigurations on system (un)reliability has been analyzed 

showing that the criticality of centralized reconfigurations is higher than distributed reconfigurations 

 

For our future goals, we plan to integrate repair concepts and uncertainty analyses in the methodology 

to evaluate the influence of unknown (SW) failure rate values on system (un)availability. Moreover, 

we plan to address the automatic optimization of system architectures based on requirements specified 

as dependability and cost values to extract the best combination of homogeneous and/or heterogeneous 

redundancies. Lastly, the evaluation of the degradation of the functionality with heterogeneous 

redundancies may be addressed analyzing other factors than system failure probability. 
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