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Abstract: Integrated Deterministic Probabilistic Safety Assessment (IDPSA) methodologies aim to 

achieve completeness and consistency of the analysis. However, for the purpose of risk informed 

decision making it is often insufficient to merely calculate a quantitative value for the risk and its 

associated uncertainties. IDPSA combines deterministic model of a nuclear power plant with a method 

for exploration of the uncertainty space. Huge amount of data is generated usually in the process of 

such exploration. It is very difficult to “manually” process and extract from such data information that 

can be used by a decision maker for risk-informed characterization and eventually improvement of the 

system safety and performance. Such understanding requires an approach to the interpretation, 

grouping of similar scenario evolutions, and classification of the principal characteristics of the events 

that contribute to the risk. In this work we develop an approach for classification and characterization 

of failure domains (domains of uncertain parameters where critical system parameters exceed safety 

thresholds). The method is based on scenario grouping and clustering with application of decision 

trees for characterization of the influence of timing and order of the events. 
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INTRODUCTION 
 

Dynamic methodologies in probabilistic safety assessment (PSA) employ system simulators codes 

with explicit consideration of time in the system evolution. This is necessary to account for the effects 

of process/hardware/software/human actions on the stochastic system behavior [1]. A review of 

IDPSA methodologies applied for safety assessment of nuclear power plants can be found in [1]. 

Integrated Deterministic Probabilistic Safety Assessment (IDPSA) methodologies aim to achieve 

completeness and consistency of the analysis. For decision making, however, it is often insufficient to 

merely calculate a quantitative value for the risk and its associated uncertainties [2]. IDPSA 

methodologies combine deterministic model of a nuclear power plant with a method for exploration of 

the uncertainty space which result in huge amount of data generated in the process [3]. 

 

For application of IDPSA methodologies one of the main problems is data post-processing and 

extraction of useful information that can be used by a decision maker for risk-informed 

characterization and eventually improvement of the system safety and performance. Such 

understanding requires an approach to the interpretation, grouping of similar scenario evolutions, and 

classification of the principal characteristics of the events that contribute to the risk. 

 

Several attempts to overcome this issue has been taken, particularly approaches to transient 

identification based on pattern classification by fuzzy C-means clustering [4], identification and 

classification of dynamic event tree scenarios via possibilistic clustering [5], probabilistic clustering 

for scenario analysis [6]. These methodologies use clustering tools for post-processing data to find 

patterns (scenarios that behave in a similar way are grouped into cluster/pattern) of system behaviors 

that lead to failure. 

 

In this work we develop an approach for classification and characterization of failure domains 

(domains of uncertain parameters where critical system parameters exceed safety thresholds). The 

method is based on scenario grouping and clustering with application of decision trees for 

characterization of the influence of timing and order of the events. In this approach decision trees are 

constructed to represent failure domain as a set of leaf nodes and correspondent classification rules 

that lead to each node. 
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1. CLASSIFICATION APPROACH 

 
One of the major issues in using dynamic methodologies is a large number of scenarios that can be 

produced by a single initiating event. For decision making, it is often insufficient to merely calculate a 

quantitative value for the risk and its associated uncertainties, the extraction of useful information 

which can be appreciated and handled by a decision maker is a challenge. The development of risk 

insights that can improve system safety and performance requires the interpretation of scenario 

evolutions and the principal characteristics of the events that contribute to the risk.  

The approach used to resolve this problem is based on decision tree built using clustering results data, 

to explain cluster structure attending to the values of uncertain parameters. 

 

Figure 1. Grouping and Classification approach 
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The main steps of this approach are briefly explained below. Firstly, the scenario grouping is 

performed. The main idea of this step is to focus the analysis on the sequences intractable in classical 

PSA. Thus scenarios where the order and timing of events are not important are grouped first an 

excluded from further considerations as directly amenable to PSA analysis. Then scenarios where the 

order of events is important but not their timing are grouped. Remaining group of scenarios contains 

sequences where the outcome depends on the order and timing of the events. 

 

Figure 2. Scenario grouping algorithm 
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Next, a Principal Component Analysis (PCA) is carried out. PCA is a technique for revealing the 

relationships between variables in a data set by identifying and quantifying a group of principal 

components which have the largest influence on the system response [7]. Then, based on the PCA 

results the clustering analysis is performed using adaptive mesh refinement (AMR) method. In the 

final step a decision tree is built for each failure mode using clustering results data [8]. Decision tree is 

used for data representation that explains failure domain-cluster structure. Decision tree classification 

algorithm performs orthogonal partitioning of the search space using data impurity measure as a 

splitting criterion [7, 9]. The main purpose of decision tree application is to present data in easy to 

interpret and transparent way to a decision maker to support decision making process. Finally, 

information of the leaf nodes is used for failure domain probability calculation. 

 

2. APPLICATION OF DECISION TREES 

 

A decision tree is a classification and data-mining tool for extraction of useful information contained 

in large data sets. It can be used to help in decision-making process. Decision Tree is a flow-chart like 

structure in which internal nodes represent test on an attribute, each branch represents outcome of test 

and each leaf node represents class label (decision taken after computing all attributes). A path from 

root to leaf represents classification rules. Decision threes also can be used as a powerful visual and 

analytical decision support tool, especially in case of multidimensional data, where it is impossible to 

visualize results in the original space. Decision tree can be constructed using different data impurity 

measures (e.g. Gini impurity measure, information gain measure) to select the best split among the 

candidate attributes at each step while growing the tree [10]. 

 

Although the main purpose of decision tree in this approach is to present data in easy to interpret and 

transparent way to a decision maker to facilitate a decision making process, decision tree also can be 

used as a predictive model which maps observations about an item to conclusions about the item's 

target value [10]. 

 

3. PROBABILITY ESTIMATION USING DECISION TREES 

 
Given an uncertainty space split into non-overlapping cells (grids) the failure domain is represented by 

agglomerations (clusters) of these cells. Therefore, the probability of being in the failure domain is 

related to the volume of the failure domain ~ failurep V , where failureV  - total volume of cells in a 

cluster. 

 

When growing decision tree the failure domain becomes represented by final nodes in the tree and 

correspondent classification rules, so taking into account cells probabilities as average probability 

values of scenarios contained in correspondent cell: 
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the probability of being in a failure mode i is as follows: 
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where n – dimensionality, n - cell volume, totalV - total volume, 
kp  - is average probability of 

scenarios contained in cell k, jM - cells contained in the final failure node (leaf) j and N – total 
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amount of failure nodes (leafs). Depending on the values 
kp  it is possible to assign weights per each 

cell when building a tree, so the scenarios (cells) with higher probability are likely to be classified into 

the same final node. 

 

4. APPLICATION EXAMPLE 

As an example case to illustrate the presented approach we chose a benchmark exercise performed in 

the work frame of the SARNET research network [11]. The exercise is based on a hypothetical 

transient of a typical French 900 MWe PWR (3 loops, with Passive Autocatalytic Recombiners – 

PAR). The transient description: 

 Loss of Coolant accident (LOCA) with a 3’’ break size on cold leg of RCS (INI – initiation 

event), 

 The safety injection system and Containment Heat Removal System (CHRS or spray system) 

are not available until the beginning of core dewatering, 

 The steam generators are available but not used by the operators, 

 No water injection occurs before core dewatering (SIS – water injection event), 

 The reactor is operating at nominal power before the initiating event. 

 The calculated core dewatering occurs at 4080 s (1h08mn). The vessel rupture occurs at 14220 

s (3h57min) if no action is undertaken. 

During the core degradation phase, the situation is supposed to be as follows: 

 A water injection (SIS) means is available (with an “average” flow rate) and can be used by 

the operators, 

 The spray system (CHRS) is available and can be used by the operators, 

 water injection after the beginning of clad oxidation causes an increase of the hydrogen flow 

rate towards containment, 

 Hydrogen combustions (IGNI) can occur if the containment gas mixture is flammable; 

recombiners, because of their high temperature, can initiate a combustion ; such combustions 

can be total (all the hydrogen in the containment is burnt) or not. 

For the test case, to make it simple enough but yet having a physical meaning we took only 

containment pressure of PLim = 0.3MPa threshold as a failure criterion. Using Monte Carlo sampling 

over 443200 scenarios have been generated for INI(initiating event) + all possible combinations of 

SIS, CHRS, IGNI).  

 

5. RESULTS 

Performing grouping analysis we identified the following possible sequences: INI SIS; INI SIS CHRS; 

INI SIS IGNI; INI SIS CHRS IGNI; INI CHRS; INI CHRS SIS; INI CHRS IGNI; INI CHRS SIS 

IGNI; INI CHRS IGNI SIS; 

 
Analyzing classification results it has been found that sets [INI,CHRS], [INI,SIS] and 

[INI,CHRS,SIS],[INI,SIS,CHRS] do not cause containment over pressurization when not followed by 

hydrogen ignition event (IGNI). 

 

Sequences [INI CHRS IGNI], [INI CHRS IGNI SIS] – also do not generate the pressure spike big 

enough to cause containment failure. 

 

In sequences [INI SIS IGNI], [INI SIS CHRS IGNI] and [INI CHRS SIS IGNI] the outcome depends 

on the time when safety systems have been actuated and stochastic event (IGNI) have occurred.  

 
In figures below we illustrate an example of application of clustering analysis and decision trees for 

the sequences that require dynamic treatment. 
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Figure 3. Scenario Grouping 
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Figure 4. Clustering analysis results for sequence [INI SIS IGNI], no refinement. 
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Table 1. Containment failure probabilities 

Sequence p(P>PLim) 

[INI,SIS,IGNI] 0.51379 

[INI,SIS,CHRS,IGNI] 0.07221 

[INI,CHRS,SIS,IGNI] 0.00189 

 

 illustrates results of clustering analysis for the sequence [INI SIS IGNI] with static grid, cells that 

contain failure scenarios inside are grouped into cluster that represent failure domain. For each cell in 

the cluster the algorithm calculates correspondent probability, see figure below. 

 

Figure 5. Containment failure probability distribution for sequence [INI SIS IGNI] 

 
 

Different values of probabilities in the different parts of the failure domain are caused by 

different H2 concentrations, that have, according to benchmark specifications (see reference 

[11]), different probabilities distribution for time delays for IGNI event to occur, see figure 

below. 
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Figure 6. H2 molar fraction (%), H2 inflammability and ignition limits (%). 

 
 

Figure 7. H2 molar fraction (%), H2 inflammability and ignition limits (%). 
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Using clustering results data we build a decision tree, to represent failure domain structure. In 

this work, to illustrate presented approach, we use only two uncertain parameters, however, 

the main advantage of using decision trees is the ability to represent complex failure domains 

with 4 or more uncertain parameters, when it is difficult to visualize results using other 

methods. Decision tree complexity depends on the shape of the failure domain and level of 

details (initial grid and refinement step). However, it is possible to prune decision tree, so the 

complexity and precision are both at the acceptable levels. 

 

Figure 8. Decision tree fitted into clustering results data for the sequence [INI SIS IGNI] with pruning. 

 

6. DISCUSSION 

In this work we present an approach for grouping and classification of typical “failure/safe” scenarios 

identified using IDPSA methods. This approach allows to classify scenarios that are directly amenable 

in classical PSA and scenarios where order of events, timing and parameter uncertainty affect system 

evolution and determine violation of safety criteria. 

 

We use grid based clustering with AMR and decision trees for failure domain characterization. 

Clustering analysis is used to represent failure domain as a finite set of representative scenarios (cell 

centers) grouped into clusters based on failure criteria. Decision trees are used to visualize failure 

domain structure as a set of classification rules that lead to the leaf nodes that represent the outcome 

for each set of classification rules. Decision trees can be applied to the cases where 4 or more 

uncertain parameters are included in the analysis and it is difficult to visualize results using 3D space.  
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This approach can serve as a tool for establishing connection between classical PSA methodologies 

and advanced Risk-Informed approaches to facilitate Decision Making. It can provide useful insights 

into likelihood of various accident scenarios, accident progression and can be used for development of 

understanding, managing and mitigation of complex plant behaviour including severe accident 

scenarios.  
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