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Abstract: Modelling Common Cause Failures (CCFs) is an essential part of Probabilistic Risk 
Assessment (PRA). In the UK, the normal approach for the Advanced Gas-cooled Reactors (AGRs) is 
to use the beta factor approach with these parameters determined using the Unified Partial Method 
(UPM). However, there has been recent impetus to consider the feasibility of using a more detailed 
CCF approach for the AGRs such as the Alpha Factor method. The AGRs share some component 
types with water cooled reactors. For these it is possible to obtain alpha factors from international 
databases (such as the US Nuclear Regulatory Commission (NRC) CCF Parameter Estimates and the 
International Common-Cause Data Exchange (ICDE)). However, AGRs contain many unique 
components which are not listed in these databases. An additional difficulty is the small AGR fleet 
size and consequently a potential lack of operating experience. This paper presents the experience to 
date in deriving alpha factors for AGR components, and presents a Bayesian method which can be 
used in cases where comparative prior data is sparse. Insights and experiences from the process are 
discussed. 
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1.  INTRODUCTION 
   
Complex systems, such as nuclear power stations, have numerous interactions between different parts 
of the system. Some of these interactions are obvious while others are less apparent, but the net effect 
is that different parts do not act independently of one another. Phrased in a statistical sense this means 
that the probabilities of failure of any two components are not independent of one another. However, 
given the large number of components at a power station, the number of potential combinations and 
dependencies is vast. As a first approximation most risk models make the assumption that basic 
entities in the model are independent of one another. Redundancy is a key area where this first 
approximation needs to be revised in order to produce meaningful risk results. Redundancy of 
components is a core concept in the design of high reliability systems, providing protection against 
single failures of equipment, and also helping to provide protection against hazards by physically 
separating redundant trains. However, it is well known that the probability of multiple “identical” 
components failing simultaneously is significantly more probable than would be expected if failures 
were independent. Hence, independence of failures is not an appropriate assumption to maintain, and 
it is revised through the use of the concept of common cause failure (CCFs) probabilities. Estimating 
common cause failures can be thought of as a simplifying method which circumvents the need to 
estimate a full covariance matrix over all plant components which would not be practically possible, 
and would be unsupportable by data. 
 
In order to gain a reasonable estimate of the reliability of systems with high redundancy, it is essential 
to estimate the effect of dependent failures by estimating CCF probabilities. CCFs can represent a 
large proportion of risk in NPPs and feature in many PRA minimal cutsets. In the nuclear industry the 
main three models used to model CCF are the Multiple Greek Letter (MGL) model, the Alpha Factor 
model, and the simpler Beta Factor model. These are parametric models, where the parameters are 
derived using statistical analysis of failures and degradations from operating experience.  
 
The simplest of these methods is the beta factor approach. A beta factor is simply a proportion of 
observed failures which are CCF events. The use of beta factors is binary in the sense that either a 
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CCF event occurs and all redundant trains are affected, or there is no CCF. There are different ways of 
estimating beta factors, for example they can be estimated directly from data, and in the past this data 
driven approach has been used in the UK. 
For the AGRs, the approach that has been used to determine the beta factors is the UPM [1]. A body 
of work has been conducted to determine the feasibility of moving to the Alpha Factor model for the 
AGRs. This paper presents the findings of this work and the issues found to date. 
 
 
2.  UNIFIED PARTIAL METHOD (UPM) 
 
The UPM is driven by assessing the likelihood of CCFs on a system based level, using a scoring 
assessment across eight categories [2]. The scoring in these areas is used to estimate a beta factor. The 
categories are: 
 

1. Redundancy/Diversity 
2. Separation 
3. Environmental testing 
4. Analysis 
5. Understanding 
6. Safety Culture 
7. Operator interaction 
8. Environmental control 

 
Based on the assigned scores, an overall beta factor (conditional probability of a CCF, given that a 
failure has occurred) is calculated. Note, deriving beta factors using the standard Beta Factor Method 
differs from the UPM in two significant respects. The first is that the standard Beta Factor Method 
uses operating experience to derive a single beta factor. The second is that in calculating the beta 
factors, no consideration is made for redundancy, and in particular whether there are more than 2 
components is a particular system/group. Redundancy is considered when using the UPM to derive 
beta factors as one of the assessment categories.  
 
UPM offers some advantages over a purely data driven approach. It has a structured methodology 
based on engineering judgment to assess a system’s propensity to CCF, providing an avenue for the 
insertion of engineering insight based on the realities of the system. The scoring methodology is 
relatively simple; the analyst must have an understanding of the system, but they need not be a system 
expert. Unlike the MGL and Alpha Factor methods, operating experience data is not required. This is a 
particular advantage for assessing AGR components, where operating experience is relatively scarce, 
due to small fleet size of UK AGRs, and the very low frequency of CCF events. 
 
There are, however, criticisms of UPM. The weights used for different defenses were originally 
determined based on the analysis of electrical systems and discussions with engineers [3]. As such it is 
largely divorced from real operational experience. Changes in CCF probabilities with time are also not 
considered. It takes no account of differences between running and standby components. Additionally 
the discrete scoring scheme used does not differentiate between all levels of success criteria [4,5]. 
 
There has been some research into the shortcomings of UPM and comparisons to other methods. One 
study found that CCF probabilities calculated using UPM to be significantly higher compared to those 
derived using MGL, based on available plant data [6]. Another report recommended that three of 
UPM’s weighting factors may need to be adjusted, based on analysis of data on emergency diesel 
generators (EDGs) and similar systems [7], and comparison with the results of other CCF estimation 
methods.   
 
Considering these criticisms of the UPM (and the fact that it has limited use internationally), the 
current approach of using UPM in AGR PRA models could be improved by either: 
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• considering the feasibility to develop the UPM to address the shortcomings of the beta 
factor/UPM approach, and carry out such development work; or  

• by replacing the beta factor/UPM approach with another CCF analysis method comparable 
with worldwide good practice. 

 
EDF Energy, the operators of UK AGRs, have chosen to investigate the use of the Alpha Factor 
methodology within their PRA models, and commissioned a study to investigate how alpha factors can 
be used in their PSA models.  The Alpha Factor method was chosen over the similar MGL method 
since uncertainty analysis is more straightforward with the Alpha Factor Method [8]. The study has 
been running for the past two years. 
 
3.  ALPHA FACTOR METHOD 
 
The methodology of deriving alpha factors from operating experience is well defined. Both the NRC 
and the ICDE offer their own guidance [8, 9].  
 
The calculation of CCF alpha factors requires impact vectors as an input.  An impact vector is a 
numerical representation of a CCF event. It incorporates uncertainty as to whether or not an event was 
in fact a dependent failure event. For a Common Cause Component Group (CCCG) containing k 
components, the impact vector for that event will contain k+1 elements, where each element represents 
the number of coincident failures and one element is used to represent zero failures, as shown below: 
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An impact vector is created for each observed event, and the event is proportioned across the elements 
by considering three factors: a timing factor, a shared cause factor and a degradation state factor.  The 
consideration of these factors results in a number between zero and one being assigned to each 
element in an impact vector. Appendix A gives summaries of the approach used to derive these 
factors, using NRC methodology, ICDE methodology and the methodology that has been used to 
analyze AGR operating experience, which in turn is based on the NRC and ICDE approaches. 
 
The alpha factors represent the proportion of failure events which relate to a defined number of 
components (αk is the probability that when a common cause basic event occurs in a CCCG, it 
involves the failure of k components). A point estimate of the alpha factors can be calculated as 
proportions based on the impact vectors.  
 
 
4.  A COMPARISON OF UPM AND ALPHA FACTOR METHODS 
 
The experience outlined in Sections 2 and 3 is summarized in Table 1 below. 
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Table 1: UPM Beta Factor - Alpha Factor Comparison Table 
Criteria UPM/Beta Factor Alpha Factor method 

Internationally recognised Limited use internationally. Widely used in nuclear industry 
Based on operating experience Method derived from 

engineering judgment 
interpretation of historical 
operating experience through 
workshops. 

Yes. 

System or component based System. Component. 
Ease of use Straight forward. Straight forward. 
Success criteria Limited allowance for 

different success criteria. 
Can be used to calculate CCF 
probabilities for all levels of 
success criteria. 

Differences between running and 
standby components accounted for 

No. Potentially, if alpha factors are 
available for different failure 
modes. 

Allows for variation in CCFs 
amongst different components 

No. Yes – different alpha factors can 
be used for different components. 

Compatible with Bayesian 
techniques 

Not without further 
development. 

Yes. 

Compatible with sensitivity 
modelling 

No. Yes – assuming PRA software has 
the facility to assign assumed 
distributions to alpha factors. 

 
 
5.  ALPHA FACTORS FOR UK PRA MODELS 
 
CCF alpha factors for various components are published in the NRC database [10]. These have been 
derived using US operating experience. The ICDE database publishes impact vectors for various 
components from which alpha factors can be calculated [11]. This is based on operating experience 
gathered from a number of different participating countries. These databases could be used to provide 
alpha factors for UK AGR PRA models. However, AGRs contain a number of component types which 
are listed in the NRC or ICDE databases.  
 
Alpha factors for these components could be derived from AGR operating experience. Indeed AGR 
operating experience is used to provide estimates of independent failure rates in UK PRA models. 
However, CCFs are much rarer than independent failures, so far more data is required to provide 
reliable estimates of CCF probabilities. Preliminary results of analysis across a number of components 
shows that the alpha factors calculated purely from AGR operating experience are zero for α3 and 
above. 
 
The NRC CCF database contains “No Data (Prior Only)” factors. These are the prior factors used to 
derive the component alpha factors in the NRC CCF database. NRC state that these CCF parameters 
may be used for those cases where there is no reasonable set of data to approximate the intended event 
[10]. The basis for how these prior factors are calculated is described in Reference 12.  
 
The use of No Data (Prior Only) factors in AGR PSA models is currently being investigated. Updating 
these factors using Bayesian methodology (see Section 7) is an additional option, which provides a 
method to take account of operational experience from specific stations even in the case where there is 
limited applicable prior data available.  
 
 
6.  USING ALPHA FACTORS IN RISKSPECTRUM PSA SOFTWARE 
 
The PRA modelling software currently used for AGR PRA models is RiskSpectrum v1.1.4.3.  
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RiskSpectrum has the facility to model CCFs by assigning alpha factors to CCF groups [13].  There 
are however two significant shortcomings with this approach, which are discussed below. 
 

(i) Adjusting for “non staggered” alpha factors in RiskSpectrum 
 
The alpha factors published in the NRC database are based on a staggered testing regime. However 
alpha factor modelling within RiskSpectrum uses formulae based on the assumption that the alpha 
factors were calculated under a non-staggered testing regime. The formulae for calculating CCF 
probabilities, from alpha factors are given below [8]:  
 

a.) Alpha Factor method (non-staggered testing) 
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b.) Alpha Factor method (staggered testing) 
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where TQ  and 
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It is possible to derive a formula to convert α factors from “staggered” to “non-staggered”, however, a 
simpler substitution method can be used [14]. See Table 2 below: 
 

Table 2: Calculation of the amended α-factors to input into RiskSpectrum PRA model 

Process Description Relevant Parameters and Equations 

Step 1: input data (from the CCF database) 432 ,, ααα  

Step 2: calculate α1 and αt 
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Step 3: calculate α2a, α3a and α4a 

4/
3/
2/

44

33

22

ta

ta

ta

ααα
ααα
ααα

=
=
=

 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Step 4: calculate α1a and αta 
aaaata

aaaa

4321

4321
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1
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Step 5: calculate α2aa, α3aa and α4aa (which provides the input to 
RiskSpectrum) 
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Output: CCF parameters for input into RiskSpectrum aaaaaa 432 ,, ααα  

 
 
A simpler (though approximate) method to convert “staggered” alpha factors for use in RiskSpectrum 
is to divide each alpha factor by its number. I.e. divide α2 by 2; α3 by 3 etc. Using the “No data prior” 
NRC alpha factors for a CCCG size 4 [10] and this approximation, the error in the Q values is around 
1.5%. 
 

(ii) Using alpha factors for CCCGs with more than 4 components within RiskSpectrum 
 
The general formula is given in equation (1). RiskSpectrum v1.1.4.3 only has the facility to input 
values for up to α4.  This is also true of the latest version v1.2.0. For component groups of size x 
(where x>4) then RiskSpectrum uses the value entered for α4 as the value for αx when calculating the 
value of Qx (CCF of all components). For the purposes of calculation it assumes that α4…αx-1 are all 
zero. 
 
This means that the value RiskSpectrum gives to CCF of all components is not correct, though the 
error is small, where α4…αx-1 are all small, which is normally the case. 
 
Using NRC “no data prior” alpha factors (with no adjustment for staggered testing) and entering the α8 
value as α4 in RiskSpectrum, Q8 is around 2.6% higher than the correct value. 
 
Using higher values of alpha factors (α2 and greater all 0.02), the RiskSpectrum calculated value of Q8 
is 30% higher than the correct value. However it is worth noting that the alpha factors used in the 
model are not expected to have values this high. 
For CCCGs with more than 4 components, where the success criteria is for one or more components to 
function successfully, then the alpha factor modelling within RiskSpectrum can be used. The errors 
due to RiskSpectrum limitations will only be small. 
 
Where different levels of redundancy are required for CCCGs with 5 or more components, then the 
alpha factor modelling within RiskSpectrum is conservative. (RiskSpectrum can only model CCFs 
involving up to 3 components or CCF of all components within a CCCG.) 
 
 
6.  BAYESIAN METHODOLOGY 
 
In some instances there is very little or no observed data, in the form of impact vector values, for 
CCFs involving large numbers of components. This is particularly challenging for systems that are 
specific to one facility. In these cases it can become desirable to use Bayesian updating to attempt to 
use all available data to provide the best possible estimate. This section describes a method for the 
implementation of Bayesian updating of alpha factors. 
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The alpha factors can be modelled using a multinomial distribution [8]. The conjugate distribution to 
the multinomial distribution is the Dirichlet distribution. The Dirichlet distribution is the multi-variate 
generalisation of the Beta distribution. The joint multinomial likelihood distribution for the alpha 
factors has the following form: 
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Where X represents the data vector, αi is the ith alpha factor, and xi is the ith observed number of data 
points.  Note also, that the values of αi are constrained by: 
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Note also that the following expression: 
 ∑

i
ix

 
(7) 

is the total number of observed failure events.  It is also worth noting that, since the observed data is 
fixed, the combinatorial term at the start of the equation can be omitted for the purposes of calculating 
a posterior. 
 
The application of Bayes’ theorem can then be used with an appropriately chosen prior (such as the 
Dirichlet distribution) to provide the posterior distribution. However, a full multi-dimensional prior 
and solution is particularly complex. The use of CCFs themselves can be thought of as a method to 
avoid using multi-dimensional parameters and estimating covariances in the main model. With this 
viewpoint in mind, if there were an effort to introduce multi-dimensionality into commercial risk 
models, then CCFs would be a counter-intuitive place to start. Hence, one possibility is to reduce the 
problem into several one dimensional problems; in the example above there would be four one-
dimensional estimation problems. 
 
Using this simpler method, the problem is reduced to several uni-dimensional problems, rather than a 
single multi-dimensional problem. A beta distribution could be used as the prior over each parameter 
in turn, and using a binomial likelihood. In this case we can view all other parameters as taking the “1-
p” probability of the binomial distribution. For example if we are seeking to update alpha 2, then we 
can look at the probability that an event occurs affecting two components, and the probability that an 
event occurs which affects a different number of components to two. In this case we have simplified 
the problem sufficiently that validated software such as R-DAT can be used to perform the analysis. It 
should be noted that to perform multivariate analysis, alternative software such as BUGS is needed. 
The simplified Beta distribution method has numerous attractive properties. However, it is not clear 
from inspection what impact this simplification will have on the overall results. For this, a comparison 
between the simplified Beta distribution method and the full Dirichlet distribution approach is 
required.  
 
This comparison is carried out for a simple example case below, in which it is assumed that there is 
some available data from the specific plant of interest but no data with which to form a prior: 
 

Table 3: Hypothetical (Simplified) Data 
Failures of 1 
component (α1) 

Failures of 2 
component (α2) 

Failures of 3 
component (α3) 

Failures of 4 
component (α4) 

11 2 1 0 
 
The observed data in Table 3 is used together with non-informative beta and Dirichlet priors (all 
parameters set to one). The only difference in the priors under this selection of distribution parameters 
is that the beta distribution considers each parameter individually, while the Dirichlet is a multivariate 
distribution, and hence permits the use of a multivariate multinomial likelihood distribution for the 
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observed failures. The idea behind this selection is to choose the simplest case in which to evaluate the 
effect of considering the dimensions individually or combined. The analysis was carried out using 
WinBUGS1.4.3. For each analysis case three chains were used each with a different, user specified, 
initialisation. 100,000 update iterations were run to generate the posterior distribution estimate. The 
results are presented in Table 4 below. 
 

Table 4: Beta vs Dirichlet Priors 
 Percentile Using Beta Prior Using Dirichlet Prior 
α1 Posterior 
Distribution 

5th 5.605E-01 4.77E-01 
25th 6.833E-01 5.95E-01 
50th 7.603E-01 6.73E-01 
75th 8.28 E-01 7.45E-01 
95th 9.032 E-01 8.33E-01 
Mean 7.5E-01 6.67E-01 

α2 Posterior 
Distribution 

5th 5.696 E-02 4.98E-02 
25th 1.161 E-01 1.02E-01 
50th 1.741 E-01 1.54E-01 
75th 2.449 E-01 2.18E-01 
95th 3.637 E-01 3.26E-01 
Mean 1.87E-01 1.67E-01 

α3 Posterior 
Distribution 

5th 2.427 E-02 2.13E-02 
25th 6.42 E-02 5.66E-02 
50th 1.091 E-01 9.68E-02 
75th 1.695 E-01 1.51E-01 
95th 2.783 E-01 2.51E-01 
Mean 1.25E-01 1.11E-01 

α4 Posterior 
Distribution 

5th 3.402 E-03 3.03E-03 
25th 1.894 E-02 1.68E-02 
50th 4.498 E-02 3.98E-02 
75th 8.801 E-02 7.79E-02 
95th 1.807 E-01 1.61E-01 
Mean 6.23E-02 5.54E-02 

 
 
Intuitively one of the main benefits of using a Dirichlet distribution is to ensure that the constraint that 
the sum of all the alpha factors equals one is not violated. It is worth noting that the sum of the means 
is 1.12. Intuitively, the results using the Dirichlet distribution are “forced” to account for effects such 
as that the best estimate for α4 is not zero, while the beta distribution approach enforces no such strict 
accounting. Despite this justification of the results, this is a greater than expected violation of the 
constraint in the beta distribution case, and it is an area for further investigation. It is acknowledged 
that other selections of the parameters may cause a greater difference in the analysis results, and this 
could form the subject of additional work. However, note that in instances where there is little prior 
information in the form of either operational experience data or expert judgment, that the prior will be 
diffuse, and the results are likely to be of a similar form to that presented above. 
 
 
7. CONCLUSIONS 
 
A comparison of the UPM and the Alpha Factor method for estimating CCFs has been presented. The 
main advantage of the Alpha Factor method over the UPM is that alpha factors are more clearly data 
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driven compared to beta factors calculated using the UPM. That is, the estimates for each alpha factor 
are based on observed operational experience. However, it must be noted that there is still an element 
of subjectivity in this apparently data driven process. The derivation of the shared cause, timing and 
degradation factors used to derive the impact vector for each observed event is prescribed by guide 
tables, as shown in Appendix A, the interpretation of which necessarily has a subjective component. 
So the use of the Alpha Factor method does not completely remove the subjective nature of CCF 
assessment. However, the focus changes from judgments about the properties of safety systems which 
affect CCF, to judgments about the meaning of operating events and the potential for them to lead to 
CCF of two or more components. Given the rarity and complexity of CCF events, it is not entirely 
clear that complete removal of subjective assessment is even desirable. 
 
Overall the Alpha Factor method has a good grounding in operational data, which provides greater 
confidence in the estimates being used. As noted, the complexity of CCF events merits the input of 
human judgment. Future work could explore the value of using the important factors assessed under 
the UPM as modifying factors for alpha factor estimates. This would allow “sensible” modifications of 
the factors based on the realities and idiosyncrasies of individual power stations. 
 
A simplified method for conducting Bayesian analysis for the Alpha Factor method in no data prior 
cases has also been presented. Analysis supporting this simplification has been presented, but further 
cases should also be analysed to provide greater confidence in the validity of the simplification. 
Ultimately it should be noted that the purpose of CCF analysis should not be mathematical purity, but 
rather obtaining practical and reasonable estimates. This is especially true given the perspective that 
the use of CCFs itself is a significant mathematical simplification of the full dependency problem, 
albeit a very necessary one. 
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APPENDIX A – ASSESSMENT TABLE FOR IMPACT VECTORS [8, 9] 
 
Timing Factor 
 

Factor NRC approach ICDE definition (Failure to 
run/operate) 

Proposed definition for 
WOC and AR review 

1.0 The component events are separated by 
no more than the PRA mission time 
(announced failures). 
During the time interval between the 
degradation events of components 1 
and 2, there was no successful 
challenge to component 2 
(unannounced failures). 

Multiple component impairment 
occurring within PRA mission 
time. 

The component events are 
separated by no more than 
the test interval for that 
component (stand-by 
components) or within one 
month (for operating 
components). 

0.5 The component events did not occur 
within the PRA mission time and two 
times the PRA mission time 
(announced failures). 
During the time interval between the 
degradation events of components 1 
and 2, there was one and only one 
successful challenge of component 2 
(unannounced failures). 

Multiple component impairment 
occurring outside PRA mission 
time, but within a one month's 
period (for operating components) 
or within double mission time (for 
stand-by components). 

The component events 
occurred between one and 
two test intervals times 
apart (stand-by 
components). 
One to two months apart 
(operating components). 

0.1 The component events are separated by 
more than two times the PRA mission 
time and less than three times the PRA 
mission time (announced failures). 
During the time interval between the 
degradation events of components 1 
and 2, there were two and only two 
successful challenges of component 2 
(unannounced failures). 

Multiple component impairment 
occurring more than one month 
apart (for operating components) 
or more than double mission time 
(for stand-by components). 

The component events 
occurred between two and 
three test intervals times 
apart (stand-by 
components). 
Two to three months apart 
(operating components). 

 
Shared Cause Factor 
 

Factor NRC approach (Announced Failures) ICDE definition (Failure to 
run/operate) 

Proposed definition for 
WOC and AR review 

1.0 Used when the analyst believes that the 
cause of the multiple failures is the 
same, often resulting in the same 
failure/degradation mechanism and 
affecting the same piece-parts in each 
of the components. The corrective 
action(s) taken for each of the 
components involved in the event is 
(are) also typically the same. 

This code is used when the 
analyst believes that the cause of 
the multiple impairments is the 
same, regardless of the cause. A 
shared-cause factor code “High” 
implies multiple impairments 
from the same root cause of 
impairment, often resulting in the 
same failure/degradation 
mechanism and affecting the 
same piece-parts of each of the 
multiple components. The 
corrective action(s) taken for each 
of the multiple components 
involved in the event typically is 
(are) identical. 

As NRC and ICDE 
approach.  

0.5 This value is used when the event 
description does not directly indicate 
that multiple failures resulted from the 
same cause, involved the same failure 
mechanism, or affected the same piece-
parts, but there is evidence that the 

This code is used when the event 
description does not directly 
indicate that multiple impairments 
resulted from the same cause, 
involving the same failure 
mechanism, or affected the same 

As NRC and ICDE 
approach. 
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underlying root cause of the multiple 
failures is the same. 

piece-parts, but there is strong 
evidence that the underlying root 
cause of the multiple impairments 
is the same. 

0.1 This value is used when the event 
description indicates that the multiple 
failures resulted from different causes, 
involved different failure mechanisms, 
or affected different piece-parts, but 
there is still some evidence that the 
underlying root cause of the multiple 
failures is the same. 

This code is used when the event 
description indicates that multiple 
impairments resulted from 
different causes, involved 
different failure mechanisms, or 
affected different piece parts, but 
there is still some evidence that 
the underlying root cause of the 
multiple impairments is the same. 

As NRC and ICDE 
approach. 

 
Degradation Factor 
 

Factor NRC approach (Announced Failures) ICDE definition (Failure to 
run/operate) 

Proposed definition for 
WOC and AR review 

1.0 The component has completely failed 
and will not perform its specific 
function. For example, if a pump will 
not start, the pump has completely 
failed, and degradation is complete. 

The component has completely 
failed and will not perform its 
function. For example, if the 
cause prevented a pump from 
starting, the pump has completely 
failed and impairment would be 
complete. If the description is 
vague this code is assigned in 
order to be conservative. 

As NRC and ICDE 
approach. 

0.5 The component is capable of 
performing some portion of the safety 
function and is only partially degraded. 
For example, high bearing temperatures 
on a pump will not completely disable a 
pump but will increase the potential for 
failing within the duration of the PRA 
mission. 

The component is capable of 
performing the major portion of 
the safety function, but parts of it 
are degraded. For example, high 
bearing temperatures on a pump 
will not completely disable a 
pump, but it increases the 
potential for failing within the 
duration of its mission. 

As NRC and ICDE 
approach. 

0.1 The component is only slightly 
degraded but component safety 
function is impacted. An example 
would be a safety valve with setpoint 
drift in excess of technical specification 
but still within the bounds of the plant 
safety analyses. This also includes 
incipient failures where some 
degradation or a degradation 
mechanism has become apparent, has 
not yet impacted component function, 
but has caused failures in other 
components. 

The component is capable of 
performing the safety function, 
but parts of it are in a state that - 
if not corrected - would lead to a 
degraded state. For example, a 
pump-packing leak, that does not 
prevent the pump from 
performing its function, but could 
develop to a significant leak. 

As NRC and ICDE 
approach. 

0.01 The component was considered 
inoperable in the failure report; 
however, the failure was so slight that 
failure did not seriously affect 
component function. An example 
would be a pump packing leak that 
would not prevent the pump from 
performing its function. 

Not used Not used 

 
 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

References 
                                                 
[1]      HSE, Reactor Nuclear Research Index 2005, Technical Area: “Probabilistic Safety Analysis”, Issue:  PSA 

Methods, Issue Number 11.2, Open Technical Areas, (2005). 
[ 2 ]  P. V. Brand and D. Gabbot, “Unified Partial Method for Dependent Failures Assessment”, AEA 

Technology, AEA Project Reference Number: GNSR/PSA/6, NSMRU Project Reference Number:  
SA/GNSR/11, (1999). 

[3]    R. A. Humphreys, “Assigning a numerical value to the beta factor common cause failure evaluation”. 
Proceedings of Reliability, Paper 2C/5, (1987). 

[4]      S. Turner, “CCF modelling in UK PSAs”, Health and Safety Laboratory, undated. 
[5]     A. Zitrou, T. Bedford and L. Walls, “An Influence Diagram Extension of the Unified Partial Method for 

Common Cause Failures”, Quality Technology & Quantitative Management Vol. 4, No. 1, pp. 111-128, 
(2007). 

[6]     J. Dewailly, A. Bonnevialle and T. Nguyen. “EDF CCF benchmark on CCF methodologies for CCF 
groups of size 4”.  PSAM 10 - 10th International Probabilistic Safety Assessment & Management 
Conference, (2010). 

[7]   A. Bickley, V. Brand and M. Peirce, “Data Analysis to Support Calibration of Dependent Failures 
Modelling: The Importance of Different Defences”, AEA Technology, HSE Coordinated Nuclear Safety 
Research Programme, (1994). 

[8]    A. Mosleh, D.M. Rasmuson and F.M. Marshall, “Guidelines on Modeling Common-Cause Failures in 
Probabilistic Risk Assessment”, NUREG/CR-5485, Nuclear Regulatory Commission, (1998). 

[9]    “International Common-cause failure Data Exchange – ICDE General Coding Guideline – Technical 
note”, NEA/CSNI/R(2004)4, OECD, (2004). 

[10]     U.S. Nuclear Regulatory Commission, "CCF Parameter Estimations, 2012 Update",  
http://nrcoe.inl.gov/results/CCF/ParamEst2012/ccfparamest.htm, (2013).  

[11]     The International Common-Cause Data Exchange (ICDE) project, https://www.oecd-
nea.org/jointproj/icde.html, retrieved on 03/03/2014. 

[12]    C. L. Smith et al, “Common-Cause Failure Analysis in Event and Condition Assessment: Guidance and  
Research”, Draft version, undated. 

[13]     Relcon AB, “RiskSpectrum Professional User Manual”, undated.  
[14]   C. H. Shepherd, “CCF Modelling using the RiskSpectrum Software”, CRA-EDF-POW-J178-Issue 1, 

(2012). 

https://www.oecd-nea.org/jointproj/icde.html
https://www.oecd-nea.org/jointproj/icde.html

	Abstract: Modelling Common Cause Failures (CCFs) is an essential part of Probabilistic Risk Assessment (PRA). In the UK, the normal approach for the Advanced Gas-cooled Reactors (AGRs) is to use the beta factor approach with these parameters determine...
	Keywords:  Common Cause Failure, Nuclear, Alpha Factor method, Unified Partial Method, Bayesian
	1.  INTRODUCTION

