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Abstract: The Weibull shape parameter is often assumed to be constant, with no dependency on 
stress. However, some cases exist, in which it is a function of stress. If the stress-dependency is not 
considered, vague assumptions of the Weibull shape parameter may lead to inaccurate results, e. g. for 
reliability prediction or demonstration testing purposes. Drawbacks in choosing an adequate parameter 
are e.g. extensive testing at a specific stress level, or insufficiently established mathematical 
descriptions.  
This paper presents an approach which allows a stress-dependent derivation of the Weibull shape 
parameter based on field data. In order to do so, simulations of the customer behavior and additional 
information from the customers themselves are used. Linking the occurred failure with the 
corresponding stress-level is thus possible. 
 
Keywords: Non-constant Weibull Shape Parameter, Stress-dependency, Field Data, Customer 
Behavior, Automotive Engineering. 
 
1.  INTRODUCTION 
 
The Weibull distribution is commonly used in mechanical engineering for the characterization of the 
failure behavior of specific components and systems. The failure behavior of certain parts in 
combination with certain failure modes can be described by using a shape parameter. A specific value 
is often assumed to be constant, e.g. in the case of roller bearings. However, for other components 
such as gears and shafts, the shape parameter is non-constant, as it also depends considerably on the 
load [1]; in this case, the values are within a specific range, e.g. known from literature. Yet the 
dependency often cannot be described by a function. Hence, regarding a reliability prediction for 
future products under consideration of these dependencies, certain challenges need to be faced: 
Firstly, to describe the dependencies by a statistically representative function, extensive testing would 
be required for each failure mode of a given component, which leads to considerable costs. The 
correlation between the component’s behavior under testing conditions and field use has to be known. 
This is to ensure that the shape parameter is the same under both conditions. Secondly, gaining 
relevant customer data for automotive applications in the private sector is generally difficult, as strict 
legal constraints apply. In case of a failure, conclusions on the actual load history, i.e. the stress 
endured, can hardly be drawn systematically. Therefore, the failure of interest is allocated to the set of 
failures under field conditions, resulting in a single shape parameter for failures actually stemming 
from different load scenarios. 
 
The goal is to find a method which allows for describing the shape parameter more realistically based 
on the load history actually experienced in the field and declared by the user. The field data on hand 
could then be used more efficiently and effectively; expenditures for testing could be minimized even 
further. The stress-dependent determination of the shape parameter will lead to a more realistic 
reliability prediction for the given failure mode to be fed back as input for future applications or 
developments. It can also be used for reliability demonstration testing. Its benefits are clarified by a 
brief example regarding the success run (see [2]): Assuming a reliability of required lifetime R = 0.9, a 
confidence level PA = 0.9, a lifetime ratio LV = 0.6, an acceleration factor r = 3 and a “constant” shape 
parameter b = 1.5, results in a required sample size n = 12. If the shape parameter can be described 
more precisely concerning lower stress in the field (bfield = 1.3) and higher stress in test (btest = 1.7) the 
sample size will be reduced to n = 8. 
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In order to make field data usable for efficient analysis, case-dependent characteristics need to be 
gathered, e.g. driving style and driver type [3]. In case of an occurred failure these data are gathered by 
collecting information directly from the customer. By means of a sum of square error approach this 
information is matched with statistical data. In order to classify the user data, simulations for different 
load scenarios are implemented. The simulated load time functions are used to calculate damage 
values by means of the damage accumulation hypothesis [4]. Based on these results, the required rules 
for correctly combining the customer data are derived. The lifetime characterizing unit (e.g. miles, 
hours or load cycles) is then linked with the stress-intensity. The data used are multiple censored data. 
A Weibull analysis of the stress-specific data using Sudden-Death approaches [1] leads to stress-
specific shape parameters derived from field data.  
 
The Section below discusses briefly the shape parameter and the assumption of its stress-dependency. 
The third Section describes the customer´s role and the way how inference from the customer´s 
behavior about the applied stress can be drawn. Section 4 introduces the entire approach step-by-step 
whereas Section 5 and 6 provide a short example and conclusion. 
 
2.  STRESS-DEPENDENT SHAPE PARAMETER 
 
The Weibull distribution is determined by its parameters: the shape parameter b, the characteristic life 
(or scale parameter) T and – in case of a three parameter Weibull – the failure free time t0. All these 
parameters are dependent upon geometry, material, machining and stress [1]. In this paper, the focus is 
on the stress-dependency of the shape parameter. 
 
Experiments with some components such as gears and shafts have shown that the shape parameter 
depends significantly on the load [1]. In many cases, a higher stress yields a higher shape parameter. 
However, a steep Weibull does not immediately go along with high stress. A large shape parameter 
corresponds with a small variation in the times to failure. This fact is for instance used to control the 
quality of turbine blades made from metal as purer metal results in steeper shape parameter than dirtier 
metals [5]. The stress-dependency is shown by several conducted experiments:  
 
Maenning [6] demonstrated a stress-dependency for shafts made from C35. The observed failure mode 
is crack due to fatigue. He proved his findings by experiments on 19 stress levels from 295 up to 385 
MPa with at least 20 specimens in each level. A higher stress results in a larger shape parameter. 
 

Figure 1: Stress-Dependent Weibull Shape Parameter as well as the Characteristic Life 
Including their Confidence Intervals; a) Brodbeck and b) Groß 
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The same dependency is determined for gears with failure mode crack. Groß [7] tested three samples 
with 12 specimens each at 530, 640 and 840 MPa. He used gears made from 42CrMo4V. Brodbeck [8] 
considered carburized steel 16MnCr5 gears and carried out extensive tests at 120, 140 and 160 Nm 
with each 100 specimens. Results from Groß and Brodbeck are summarized in Figure 1. Here, a three 
parameter Weibull analysis is applied. 
 
Beier [9] revealed a similar positive correlation for gear pairs made from plastic. In this case the 
observed failure modes were crack due to fatigue and additional wear. He investigated at least 8 
specimens in different variants. The occurred mechanisms are discussed separately. 
 
Nelson [10] states that experience confirms the dependency between the shape parameter and stress 
levels in terms of metal fatigue and even roller bearings. Bergling on the other hand [11] assumes a 
constant shape parameter for roller bearings. Additionally, for some electrical insulation Nelson 
suggests a negative correlation, i.e. a higher shape parameter at lower stress. 
 
3.  APPLIED STRESS BY THE CUSTOMER 
 
Field data is generally one of the most important resources that can be used by any reliability program. 
No data will better demonstrate the true reliability of a product, nor identify the failure modes that 
exist in the field. Thus, a more comprehensive reliability database can be created by incorporating 
field usage data. Particularly, information about customer behavior helps to differentiate the 
individually occurring stress that leads to failure. For instance, Lucas et al. [12] introduced a 
complementary FRACAS approach, which focuses on differentiated usage conditions linked to failed 
and non-failed units, in terms of the oil and gas industry.  
 
Normally, in automotive engineering, important data on operating and environmental conditions are 
missed to draw interference about the applied stress leading to the specific failure. On the other hand, 
in case of leasing models, e.g. car-sharing or car rental, gathering stress-related data should be 
possible. Leopold [13] analyzed several sources of reliability data during operating time. A common 
drawback is the missing link between the applied stress and an occurred failure, especially for non-
commercial passenger cars. For this reason, the influences on stress from customer behavior are 
discussed first, followed by a proposed adequate procedure which is implemented in the entire 
approach in Section 4 to challenge this fact. 
 
3.1.  Influences on Stress from Customer Behavior 
 
In general, the stress on a certain part depends on the operating and environmental conditions of the 
product. Both are immediately affected by customer behavior. In the context of automotive 
engineering, particularly powertrain components, the resulting stress is a combination of the driver, the 
road and the vehicle. Depending on the actual product design, the externally applied load on the 
product is broken down into single parts as stress. Thus, the applied stress, as a function of the 
individual load, ultimately leads to wear and fatigue failures at different times [3].  
 
The driver’s - respectively the customer’s - influence includes the driving style and the loading. In a 
wider sense the road type can be inferred as well, as the driver certainly chooses the road. The driver 
decides where the product is used and the ways in which it is used. These external criteria are listed in 
Table 1. These are in line with the 3F method introduced by Kücükay [14]. The method incorporates 
three dimensions which can be represented by the criteria. Each criterion is expressed in characteristic 
attributes. 
 
Consequent, there are 48 (equal to 4 x 4 x 3) combinations of customer types. By means of simulation 
of these combinations, incorporating the results from field experiments, Müller-Kose [15] pointed out 
some examples which indicate different damage values for several combinations. The ranking of the 
customer type combinations regarding the damage values depends on the focused part and failure 
mode as well. 
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Table 1: Stress Influencing Criteria and Characteristic Attributes, c.f. [3,15] 

 
As mentioned above, different vehicle configurations result in a different stress related to a certain 
part. In other words, a theoretical identical customer behavior leads to different stress due to different 
vehicle configurations. For instance, there are 64 different vehicle configurations when assuming each 
two car types, engines, moving-off elements, hybrid elements, main gearboxes and rear axle drives 
[16]. However, a certain part, e.g. a definite gear, is assembled in all configurations. This fact can be 
used to increase the database in reference to the field data approach. 
 
3.2.  Identification of the Customer Type Combination of Interest 
 
Identification of the appropriate customer type combination enables inference about the applied stress. 
Required information is: a representative mapping of the behavior of all customers and on the other 
hand an assessment of the single customer whose product failed. 
 
Müller-Kose collected a representative data set by means of comprehensive field experiments. The 
results given in Table 2 represent exemplary for each criterion a percentage allocation of the 
characteristic attributes. With this 11 customer types can be defined: 
 

Table 2: Percentage Allocation of 11 Customer Types, Following [15] 

 
If such a percentage allocation is known, this allocation can be matched with the customer behavior. In 
order to do this, the customer is encouraged to provide information if a failure occurred; e.g. to 
complete a questionnaire. The customer is then asked to estimate their preferred road type, loading and 
driving style. This results in an individual percentage allocation of the customer. For instance, 
customer “C” states, that the proportion of their total mileage is 20 % in urban traffic, 60 % on rural 
roads and 20 % on motorways. In the next step, based on this information the most proper customer 
type (see Table 2) is to be figured out. For this purpose, the sums of square errors are calculated (see 
Section 4). The customer type with the least square error represents the appropriate actual customer 

Criteria Description Characteristic attributes 
Road type Proportion of total mileage on various types of roads such as 

motorway, rural road, urban traffic or mountain road 
Motorway, rural road, urban 
traffic or mountain road 

Loading Percentage distribution of journeys with numbers of 
passengers, cargo and trailer weight 

Light, average, heavy or 
extreme (trailer) 

Driving 
style 

Shifting frequency, gearshift engine speed, acceleration habits 
in town (moving-off from traffic lights), on rural roads (when 
leaving built up areas) and on the motorway (overtaking) 

Sporting, average or 
moderate 
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driver 6 86 8 
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type. Repeating this analogously for loading as well as driving style yields the appropriate customer 
type combination of interest. 
 
4.  APPROACH 
 
The following procedure is generally applicable for several parts and different failure modes. 
However, for the sake of simplicity it is exemplary introduced based on a gear pair of a rear axle drive. 
The observed failure mode is pitting due to fatigue. To transfer this on other parts and mechanisms, 
lifetime model and material data must be adapted among others. Here, the lifetime model is assumed 
to be valid for 50 % failure probability and the procedure is presented for identical products, i.e. an 
identical vehicle configuration. 
 
Using this procedure, the following requirements must be taken as given: First, measurements are 
needed to establish a validated powertrain simulation for the vehicle longitudinal dynamics. Second, a 
geometry data set of the considered part is necessary. If the simulation does not provide the data 
directly, e.g. gears in a gearbox with just a simulated input or output rotation speed, this can be done 
indirectly by additional use of gear ratios. Third, material data and the underlying lifetime model are 
required, i.e. the Wöhler curve and its defining parameters respectively. 
 
There are two main paths in the depicted algorithm (Figure 2): 
 
• The determination of load values for each type. Lifetime model and material data is needed and 

damage values are determined (see I. simulation path).  
 
• On the other hand, the given field data, its gathering procedure and Weibull analysis (see II. field 

path). 
 
Both paths are combined in the algorithm. With this, the estimation of a stress-dependent Weibull 
shape parameter can be done and the optimization of the initial assumed lifetime exponent is enabled.  
 
To simplify in the following remarks, “one” out of 48 customer type combinations is called “type i”. 
The implemented steps in the algorithm are as follows: 
 
I. Simulation path 
 

a) Simulate the load time function for each type i: The simulated variables are torque Ti and 
rotation speed ni over time. The simulation is done for a given reference route. The reference 
route consists of a type-specific mixture of a representative road type course. The simulation 
ends, if the reference route length wi is reached. In the automotive industry the use of 
shortened reference routes are standard in order to reduce simulation time significantly [3]. 

 
b) Transform the simulated torque Ti to stress σi by means of geometry data [3]: The stress of 

interest in case of pitting is the existing Hertzian stress. It can be calculated by using the 
standard ISO 6336 part 2 [17]. 

 
c) Apply the two parametric level distribution classification [1]: For each type i the results of this 

step are the dwell time ti,j,v in stress class j and rotation speed class v. The dwell times are a 
function of the reference route length wi. 

 
d) Transform the rotation speed ni,j,v [rpm] in revolutions of the wheel ri,j [absolute frequency], 

i.e. load cycles, per each stress class j by using equation 
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 with dwell time ti,j,v [s] for type i, stress class j and rotation speed class v [16]. 
 

Figure 2: Algorithm of the Approach 

 
 

e) Apply the damage accumulation: In this case the Miner-Haibach damage accumulation 
hypothesis is assumed, due to experience in practice [3]. The specific Wöhler curve must be 
known. The slope of the fatigue strength zone is represented by the lifetime exponent k and the 
endurance strength pivot point is defined by the assumed number of endurance strength ND 
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and the material specific endurance strength σD itself. First, an initial lifetime exponent k0 is 
assumed. Afterward, for least square estimation purpose an optimized lifetime exponent k is 
used (see step III.). With this, the damage sum of the simulated reference route length Di,w is 
calculated by 
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 with σi,u ≥ σD and σi,u+1 < σD. 
 

f) Extrapolate from the reference route length wi to the required mileage wreq: The required 
mileage is for instance assumed to 200,000 km. It is obvious that various customer type 
combinations lead to different damage values when this mileage is achieved. To compare 
these damage values from simulation, they are extrapolated to the required mileage. Each 
extrapolation factor EFi is derived by the ratio wreq/wi. Thus, the expected damage sum of type 
i, extrapolated up to the required mileage, is calculated by 

      wiii DEFD ,⋅= .     (3) 

g) Calculate an equivalent stress level σi(Nref) at a reference number of load cycles Nref for each 
type i: Along with the assumption, that different types result in a different stress level about 
the required mileage, the underlying stress varies around a certain level if the stress is 
normalized at a definite reference number of load cycles. This normalization is done by 
equation 
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 (Miner elementary [4] is assumed for normalization). 
 
Repeat steps a)-g) for all types “type i”. 
 

h) Classify the equivalent stress levels σi(Nref) for i = 1(1)ntype into damage classes: To increase 
the database it is recommended to classify the equivalent stress levels of all types into damage 
classes. Furthermore, the vagueness about the underlying stress in the field makes it 
complicated to clearly assign the failure time obtained from the field to a certain type. Thus a 
classification is beneficial. Depending on the number of types, a statistically proper amount of 
damage classes nd is 

      typed nn = .     (5) 

Alternative approaches are given in [1]. If the amount of damage classes is determined the 
allocation can be done, e.g. by means of a linear approach. The class range is given by 
division of the stress range of all types by the number of damage classes nd. With this upper 
class limits σUL,d for each damage class d = 1(1)(nd-1) are defined by equation 
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The equivalent stress levels σi(Nref) are allocated to the classes consequently. Finally the mean 
stress values σm,d for all types in each damage class d for d = 1(1)nd are computed by 
arithmetic mean. 

 
i) Calculate a representative lifetime for each damage class: At first identify an average damage 

class dave. Select the type i which is close to the damage sum Di ≈ 1 and set its mileage equal to 
Bq-lifetime (here: q = 50 %), i.e. the required mileage in case of Di = 1. The selected type 
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indicates the average damage class dave. With this the representative simulated lifetimes Bq,d,sim 
for each damage class d is given by equation  
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II. Field path 
 

a) Identify the customer type combination: If a failure occurs the associated type must be 
determined. The proposed method is a sum of square procedure that requires input from both 
statistics and the customer directly. More theoretical explanations are given in Section 3.2. 
With statistical percentage amount pc,a,stat of customer type c and characteristic attribute a (c.f. 
Table 2) as well as customer information pc,a,customer of customer type c and characteristic 
attribute a, the sum of square errors Ф regarding customer type c results in equation  

     ( )∑
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The minimum of Фc indicates the appropriate customer type of each criterion. Replicate for all 
three criteria determines the appropriate 3F customer type combination of interest: 

  ( ) ( ) ( ) interestofncombinatiominminmin style drivingloadingtyperoad ⇒Φ∧Φ∧Φ . (9) 

b) Allocate field data into damage classes: After the determination of the associated type, the 
failure can be allocated into the corresponding damage class d by using the results of step I. h). 
This is enabled, because of the link between the unknown customer stress causing the failure 
and the stress quantified by the simulation path. In other words, matching the determined type 
and the simulated type empowers the allocation. As a result of this, field failure data sets for 
nD damage classes are obtained. 

 
c) Apply Weibull analysis for each damage class: For analyzing field data the Sudden Death 

assessment is an appropriate method. Field data are usually multiple censored data. Thus 
additional information, as the delivered output and the amount of intact products in each 
damage class, is needed. To approximate the amount of intact products in each damage class d 
a normally distributed customer stress σcustomer is assumed. That means, the majority of 
customer represent types, which exhibit a stress allocated in a middle damage class. On the 
other hand, only a small proportion of customer represent types which exhibit a stress 
allocated in a lower or upper damage class. This assumption is qualitatively illustrated in 
Figure 3 exemplary for three damage classes. Hence, the amount of intact products ns,d in 
damage class d is approximated by equation 
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σ

σ
customers,ULcustomer1,UL,s

,UL

1,UL

σσσσσ ndfnPn
d

d

ddd ⋅=⋅≤<= ∫
−

−    (10) 

with the overall number of intact products ns. For more explanation in Sudden Death, the 
reader is referred to [1]. Finally, this step leads directly to stress-dependent Weibull shape 
parameters. 

 
d) Calculate the lifetimes for each damage class: Convert the characteristic life (or scale 

parameter) T to the Bq,d,field-lifetime based on field data, c.f. [1]. 
 
III. Optimize the lifetime exponent: The initial assumed lifetime exponent k0 can be updated by using 

pre-processed field data (see II. above), e.g. by means of least square estimation (LSE) [18]. 
Finally, the lifetime exponent k is optimized by minimizing the sum of square errors Ф with 
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Figure 3: Assumed Probability Density Function of the Customer Stress  

and Allocation in Damage Classes 

 
 
Remark: The exact choice of the reference number of load cycles Nref in step I. g) does not matter 
regarding the allocation in step II. b) as only relative ratios are considered. 
 
5.  EXAMPLE 
 
The approach is illustrated by a simplified synthetic calculation example which is in line with the steps 
in Section 4. Some steps are omitted due to missing data, such as simulations and both identification 
and allocation of the customer type combinations. Table 3 depicts the obtained values after the 
optimization.  
 
Eight customer type combinations are assumed. Each type i is simulated. The results of the two 
parametric level distribution classifications and the transformations in revolutions of the wheel ri,j per 
stress class j, are listed in the columns stress class 1 and 2. The next columns depict results of the steps 
I. e)-g). The mean stresses σm,d are calculated for each damage class in step I. h). The next step 
identifies the average class dave and calculates representative lifetimes B50,d,sim based on the simulation 
path. Next, field data are gathered and analyzed analogously to steps II. a)-c). The resulting Weibull 
shape parameters bd as well as the characteristic lifetimes Td are stated. Thus, the B50,d,field -lifetimes 
based on field data are computed. Finally, a least square estimation regarding the lifetime exponent k 
is conducted (step III.). 
Figure 4 depicts the Weibull shape parameter b as a function of an applied stress. By fitting the data, a 
convenient shape parameter can be derived from a specific stress level. 
 
6.  CONCLUSION 
 
Products in the field provide an enormous amount of data. By means of linking the occurred failure 
event with a certain stress level, a stress-dependent analysis can be executed. The introduced approach 
empowers the decision-maker to gain a sharper understanding of a stress-dependent Weibull shape 
parameter based on field data. Using a more precisely determined stress-dependent Weibull shape 
parameter, results in a more realistic reliability prediction for future products. Thereby, drawbacks 
from product similarity related assumptions are avoided, as individual components’ failure modes are 
the focal point. Better known Weibull shape parameters, e.g. stemming from both field and test stress 
levels, might be used to reduce the necessary sample size regarding reliability demonstration testing.  
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In addition, initially assumed lifetime model parameters can be optimized. Also, analyzing field data 
using this approach allows for identifying of stress-dependent components and failure modes, which 
are still unknown. 
 

Table 3: Calculation Example 

  

k0 5 Initially assumed 
k 4.884 After optimization (step III.) 
σD 400 

 

 
ND 5.0E+07 Nref 5.0E+07 

I. e)-g) 

  
type i wi 

stress class 1 stress class 2 
 EFi Di σi(Nref) σi,1 ri,1 σi,2 ri,2 Di,w 

1 8,000 420 300,000 500 250,000 0.022 25 0.562 355.5 
2 10,500 450 300,000 480 300,000 0.025 19 0.482 344.4 
3 10,000 420 300,000 450 350,000 0.020 20 0.401 331.8 
4 5,000 420 350,000 500 325,000 0.028 40 1.129 410.0 
5 5,500 450 350,000 480 300,000 0.027 36 0.984 398.7 
6 7,500 450 350,000 500 325,000 0.032 27 0.847 386.7 
7 6,000 500 300,000 550 400,000 0.056 33 1.858 454.1 
8 7,000 450 350,000 550 350,000 0.046 29 1.303 422.3 

I. h) 

nd 3      
d 1 2 3  
σUL,d 372.5 413.3    
σm,d 343.9 398.5 438.2  

I. i) 
dave   2    
B50,d,sim 417,218 200,000 127,770  

II. c) Td 589,363 264,408 150,324 Estimated based on assumed field data 
bd 1.135 1.243 1.573 

II. d) B50,d,field 426,718 196,887 119,079   
III. Ф 2.1E+08 Least square estimation 

 
Figure 4: Weibull Shape Parameter as a Function of Stress 
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