
Automated evolutionary restructuring of workflows to minimise errors via
stochastic model checking

Luke Thomas Herbert a∗, Zaza Nadja Lee Hansen b and Peter Jacobsen b

aDTU Compute, Lyngby, Denmark
bDTU Management, Lyngby, Denmark

Abstract: This paper presents a framework for the automated restructuring of workflows that allows one
to minimise the impact of errors on a production workflow. The framework allows for the modelling of
workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN)
language, a well-established visual language for modelling workflows in a business context. The frame-
work’s modelling language is extended to include the tracking of real-valued quantities associated with the
process (such as time, cost, temperature). In addition, this language also allows for an intention preserving
stochastic semantics able to model both probabilistic- or non-deterministic branching behaviour. We
further extend this formalism to allow for the introduction of error states which allow for both fail-stop
behaviour and continued system execution. We explore the practical utility of this approach by means of
a case study from the food industry. Through this case study we explore the extent to which the risk of
production faults can be reduced and the impact of these can be minimised, primarily through restructuring
of the production workflows. This approach is fully automated and only the modelling of the production
workflows and the expression of the goals require manual input.

Keywords: Consequence Modeling and Management, Enterprise Risk Management, Industrial Safety
and Accident Analysis, Reliability Analysis and Risk Assessment Methods, Safety Assessment Software
Tools, Safety Management and Decision Making

∗ Corresponding author, lthhe@dtu.dk

1. INTRODUCTION

It is vital for all industries, for example the food industry, that workflows are generated which are safe and
fulfil specific parameters and criteria like hygiene, cost, efficiency and speed (due to the perishable nature
of the products in the food industry). A production workflow is for example cutting, forming or moulding
a product or conducting quality control measures. Developing production and business processes is today
predominantly an activity in which software tools are used to draw the process maps. The processes are
analysed by hand and improved configurations are found by a process of trial and error, often taking too
much time to arrive at an optimal practice due to the learning experience involved. There is therefore a
need for a more efficient approach.

In this paper we present a framework for the automated restructuring of workflows that allows one to
minimise the impact of errors on a production workflow. This framework allows for the modelling of
workflows by means of a formalised subset of the Business Process Modelling and Notation (BPMN)
language, a well-established visual language for modelling workflows in a business context. The frame-
works modelling language is extended to include the tracking of real-valued quantities associated with the
process (such as time, cost, temperature). In addition, this language also allows for an intention preserving
stochastic semantics able to model both probabilistic- or non-deterministic branching behaviour. We
further extend this formalism to allow for the introduction of error states which allow for both fail-stop
behaviour and continued system execution. We employ stochastic model checking to efficiently explore
the entire statespace of a workflow. The temporal logic PCTL is used to encode properties of interest for
model checking (e.g. the probability that the next error-free product will come off the production line in
less than 60 seconds).

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

 lthhe@dtu.dk


We present an algorithm that allows for the weighted generation of PCTL queries that may be used to
express a desired balance between the occurrence of errors and data quantities associated with the workflow.
The expected mean values at points of failure can be calculated in turn, allowing for the expression of
queries such as identifying the errors in operations which has the largest impact on production cost and/or
time. These queries along with a model of an existing workflow, are used as inputs to an evolutionary
algorithm which iteratively, through a process of mutation and cross-over, generates candidate improved
workflows. The model checking of a weighted set of queries is used as a fitness function for determining
the degree of improvement of candidate workflows. Being an evolutionary algorithm when a candidate
workflow shows improvement it is used as the basis for the next round of mutation and cross-over. The
software tool SBOAT is presented which implement our approach.

We explore the practical utility of this approach by means of a case study from the food industry. The case
company is one of the largest Danish producers of baked goods. Their goal is to reduce the cost of waste in
their production workflows. Through this case study we explore the extent to which the risk of production
faults can be reduced and the impact of these can be minimised, primarily through restructuring of the
production workflows. We discuss both the degree of improvement achieved by use of this evolutionary
approach and the limitations of the approach and the additional work needed, compared to other process
optimisation techniques, to make use of the approach.

2. RELATED WORK

In general by performing model checking to determine quantitative and qualitative properties of BPMN
models, this work draws a comparison with a number of other BPMN analysis techniques outlined below.
The selection of analyses discussed is not exhaustive, but covers the main approaches which have been
widely referenced in the literature. They can broadly be defined as functional analyses, non-functional
analyses and stochastic analyses.

In terms of the analysis of functional qualitative properties a wide range of approaches have been developed
for BPMN. These are predominantly focused on the analysis limited sets of functional properties, such
as proving the absence of deadlocks. The work of Ouyang et al. [8], [9] is the closest match to the type
of translation approach taken in this paper. Here, translation of BPMN models is done directly into the
web-services orientated BPEL [12] by means of an algorithm similar to what is presented in this thesis.
However, the approach by Ouyang et al. is intended to support simulation through execution of the BPEL
services with all the limitations that a simulation approach entails. Limitations are for example that
statistical simulation can explore some situations, but cannot observe all behaviours. Safety properties
which guarantee that specific behaviour will always, or, can never, occur need to be evaluated under all
possible situations which simply cannot be achieved by the simulation method. The other key limitation is
that simulations need to be executed for a certain amount of time.

A number of different approaches have been developed to analyse non-functional properties of BPMN
models. In particular there has been a focus on determining timing properties of BPMN models. General
quantitative analysis has only been identified as being explored by Prandi et. al. [10].

Analysis of BPMN models extended with stochastic properties has seen limited development with only
two approaches identified of dealing with general models which exhibit both probabilistic and non-
deterministic transitions. Prandi et. al. [10] have identified PRISM as ideally suited to the analysis of
stochastic PRISM business processes. This effort involves conversion of PRISM models into a model
expressed in the COWS [11], which in turn is converted into a model that can be analysed using PRISM [5].
This approach adds unnecessary complexity in that it is possible to convert the notation of BPMN directly
into the PRISM modelling language, and then allow PRISM to impose a semantic interpretation without
the additional semantic restrictions of going via COWS. Further, the translations PRISM to COWS and

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



in particular from COWS to PRISM is loosely defined and, in the form described by the authors, not
amenable to algorithmic translation. This approach, however, does allow the use of rewards. Consequently,
the PRISM model checker is potentially able to perform analysis of both quantitative and stochastic
properties of a business process. However, details of how such properties will be included in the original
BPMN models is not described.

3. FRAMEWORK

We present a framework which uses an extended version of the BPMN language to automatically
restructure of workflows so as to minimise the impact of errors on a production workflow. The software
tool which implements this framework is called the Stochastic BPMN Optimisation and Analysis Tool
(SBOAT).

3.1. Core BPMN

For the purposes of this paper, only a small subset of BPMN that is sufficient to illustrate the principles
of this work will be used. Often called the core subset of BPMN, it consists of the eight elements found
to be most commonly used in a large survey of real-world BPMN usage [6]; indeed more than 70% of
models surveyed consisted only of these elements. The graphical elements of core BPMN are shown in
fig. 1 and described below.

(a) Task (b) Start (c) End (d) De-
cision
Gateway

(e) Parallel
Gateway

(f) Sequence
Flow

(g) Message Flow

P
O

O
L

N
A

M
E

(h) Pool

Figure 1: Core BPMN elements.

The process of modelling a workflow in BPMN involves composing a number of BPMN elements into
a BPD. The intention is that a business process diagram captures the complete workflow of a business
process, with separate sub-components of a workflow organised into separate pools. A BPD is formally
defined here as simple partitions of a process graph with synchronisation arcs as defined in ??, with the
straightforward addition of a function to capture pools.

Definition 1 (Core BPD). A core BPD is an extended process graph tuple BPD = (N,F ,P,pool,L, lab)
where N⊆ T∪E∪G, is a set of nodes composed of the following disjoint sets:

• Tasks T, are the basic actions performed as part of a business process.
• Events E⊆ ES∪EE, where the disjoint sets ES and EE respectively represent start and end events.
• Gateways G ⊆ GD ∪GF ∪GM, where the disjoint sets GD, GF and GM respectively represent

exclusive decision gateways, parallel fork gateways, and parallel merge gateways.

F ⊆ S ∪M is a set of flow relations, where sequence flows S ⊆ N×N relate nodes to each other and
message passingM ⊆ T×GM is a relation between tasks and parallel merge gateways. P⊂P(N) is
a set of disjoint pools and pool : N→ P maps nodes to a pool p ∈ P. L is a set of unique labels and
lab : F → L is a labelling function which assigns labels to flows.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



The definition of a BPD given in definition 1 models business processes by using elements of F to define
a directed graph with nodes which are elements of N. However, definition 1 allows for graphs which are
unconnected, do not have start or end elements, and are free from various other properties which place
them outside what is implied to be permitted in standard BPMN models. To ensure that a BPD describes a
meaningful business process we have developed a set of structural semantics (well-formedness) rules [4]
which enforce restrictions on connecting elements, pool boundaries, and message passing.

When performing quantitative analysis of a graph based process language we choose well-formedness
conditions such that they impose the minimum semantic interpretation necessary to determine the control
flow of a model. In the case of a BPMN BPD, it adds no more semantic interpretation than implied by the
standard [7]. In the case of BPMN, when we have imposed restrictions they have been made only for
simplicity and are discussed at length in previous work [4].

It should be noted that by combining several Core BPMN elements any element of the entire BPMN
language can be simulated. Although a few constructs pose more complex issues. Of particular note are
inclusive gateways which pose a challenge as the specification of their semantics include a non-trivial and
non-local backwards search of the flow graph of the BPD. However, these can be addressed through the
work of Christiansen, Carbone and Hildebrandt [1] who present a method to translate this construct into
other BPMN processes with some restructuring of the overall BPD. In general, all elements of the full
BPMN language can be incorporated by simply including a preprocessing step in the analysis of BPMN
which translates non-core BPMN elements to core BPMN elements.

3.2. Extending Core BPMN

BPMN makes use of external conditions on decision gateways to select the outgoing flow from a decision
point. These decisions are modelled by the set L and assigned to specific flows by the function lab
introduced in definition 1. In practice, decision points in a business process will have outcomes which
depend on some inherent property of the task or on outside factors. The idea is that at a decision point an
active choice is made, and then that choice results in a number of different possible outcomes.

This behaviour, which is similar to a Markov decision process [13], where we wish to preserve the
intention of actors in a process and still enable probabilistic behaviour, can be effectively captured by
annotating the possible outcomes of specific decisions with pairs of labels and probabilities (l, p). We
employ the following function to ensure meaningful assignment of these intention preserving probabilistic
annotations.

Definition 2 (BPD Gateway Flow Probability Function). Given a BPD, a decision gateway probability
function is a partial function P : S ×L→ [0,1] which for a node g ∈ GD and label l ∈ L, assigns
probabilities to all outgoing sequence flows (g,x), such that for a given l:

∑
∀x∈out(g)

P((g,x), l) = 1

Definition 2 ensures that all decision gateways have an associated probability and that the sum of all
probabilities for a given label l is 1.

To enable quantitative analysis of business processes we add numerical data to our models by using the
following function which associates positive real numbers with tasks in a BPD.

Definition 3 (BPD Task Reward Function). For a BPD a reward function for a task t ∈ T is a partial
functionR : T→ R≥0.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



This function captures the notion that certain nodes have some reward or cost associated with the task.
The term reward is somewhat misleading: there is no practical distinction between costs and rewards, and
we can use these annotated values to keep track of whichever quantities may be of interest in a process.
We may associate as many reward structures as we wish with a given BPD, so that a single task may have
multiple different numerical properties which are incremented when the task is performed.

Further, we allow some reward structures to be parametrised, allowing us to model limited resources
involved in a process. In this case a reward has an associated upper and lower bound.

Note that the reward structures presented here are simple additions to the BPMN language, or other graph
based process languages, and do not alter the implied semantics of the language.

3.3. Probabilistic CTL Property Specification

The main goal with this work is to be able to perform stochastic model checking of BPMN models. We
will employ the property specification language called PCTL [5] based on classical continuous stochastic
logic [3] extended to probabilistic quantification of described properties. This logic allows us to reason
about properties relating to: timing, occurrence and ordering of events, reward values, transient and
steady-state probabilities, and best- and worst-case scenarios. An implementation of the PCTL logic is
employed by the PRISM model checker in its property specification language and has the following basic
elements.

The key constructs in the PRISM property specification language, as it applies to Markov decision
processes, are the P and R operators. The P operator refers to the probability of an event occurring, more
precisely, the probability that the observed execution of the model satisfies a given specification. The
R operator is used to express properties that relate to rewards (more precisely, the expected value of a
random variable, associated with particular reward structure) and since a model will often be decorated
with multiple reward structures, we augment the R operator with a label. For example, to determine the
mean time to exhaust the supply of cake filler we would specify the following property:

Rtime =? [F [0,∞] filler_empty]

In this property we employ the time-bounded operator FI , where I ∈ [t1, t2]∈R2, to describe if a subsequent
boolean variable becomes true, it remains true. Further the operator UI allow for specification of execution
paths where one boolean variable holds until another is true, and GI , which can be seen as the dual of FI:
expresses the fact that a condition remains, rather than becomes, true. Note that these operators can be
combined in arithmetic expressions, allowing more complex measures to be expressed.

3.4. SBOAT

SBOAT is a Stochastic BPMN Optimisation and Analysis Tool, which allows a user to model, and annotate
with rewards and stochastic branching, a business processes as a BPMN BPD. Analysis is specified
using a PRISM style PCTL query and depending on the nature of the query one or number of results are
calculated. At the core of SBOAT is the PRISM model checker [5] which performs analysis of individual
models generated by the SBAT. An overview of the design of SBOAT is shown in fig. 2.

Designing a BPMN model and adding annotations to a model is done in the modeller, shown in fig. 3.
Within SBOAT we employ an adjacency list [2] data structure to store the modelled BPD as a directed
graph.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



Figure 2: Overall design of SBOAT

Figure 3: SBAT 1.0 User Interface

This implementation approach allows nodes and edges to be of any data type, where edges implement a
simple interface that defines connections to nodes. This flexibility also supports almost any type of reward
annotation to be stored in nodes or edges. Further, the data structure is mutable and cloneable making
it possible to build a suitable data structure for a wide range of possible graph based process languages.
Internally, the data structure keeps a dictionary from nodes to a unordered list of edge elements.

The data structure used is serializable allowing for generation of XML files to store models. In the case of
BPMN models, we emit files that comply with the XML based BPMN file format [7], using the annotation
features inherent in the BPMN file format to store rewards and stochastic branching probabilities. When
importing data files we parse the BPMN XML and at that stage checks for the well-formedness of the
model are made as new nodes and edges are added.

3.5. Evolutionary algorithm

The evolutionary algorithm we have developed to optimise business workflow processes employs a
genotype-style representation of the optimization problem, variation and selection operators, and a fitness
function. However, many details are quite different from typical evolutionary approaches. The algorithm
performs optimisation of a BPD by performing modifications directly on the BPD ensuring that the final
improved process is also a BPD and requires no special interpretation by end users. The description of

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



the algorithm in this section is intended only to explain the principle of this method and not detail the
mathematical proofs behind it.

First, an initial population of BPD variants is generated. Due to the computational expense of performing
quantitative model checking of a BPD we filter these variants using well-formedness (structural semantics)
criteria and functional requirements, before evaluating their quantitative properties.

The evolution of the initial population takes place for a number of generations determined by limit. For
each generation, a population of a given size is generated. This population is produced by selecting pairs
from the previous generation, in a fashion that is proportional to their fitness score. This pair is used to
generate a new variant BPD using a crossover operator. Mutation is achieved by performing a number
of alterations of a BPD dictated by the mutation rates. If a variant proves to be well-formed and meets
functional requirements it becomes part of the next generation.

Finally, once the generation limit has been reached, the highest scoring member of the final generation
with regard to the optimisation goals, becomes the optimized BPD. Before returning this optimised BPD,
any redundant components are removed.

To enable the combination of multiple weighted objectives, and to have sets of optimization goals in
which both rewards and event probabilities can be expressed, we employ a set of optimisation goal tuples
to define an individual optimisation goal using PCTL formulae. This is because in practice a production
process is frequently optimised with regard to multiple quantitative properties. We use a set of optimisation
goal tuples for this purpose. For a set of optimization goal tuples, we evaluate the relative improvement of
a new production process BPD compared to an existing BPD using an optimisation goals scoring function.

Functional requirements allow the expression of properties which must hold for any future production
process BPD derived from a BPD. Like optimization goals, functional requirements will be defined using
PCTL formulae, however, in this case we will require that probabilities or reward values within the query
are explicitly defined, such that the return value of the query is a Boolean variable. This is to ensure the
functional requirements for each individual can be quickly evaluated as either being true or false.

A key step in our algorithm is the selection of members of a current generation used to derive the next
generation. Here we employ stochastic sampling with limited replacement. In essence, each member of
a current generation is mapped to a contiguous segment of a line, such that each individual’s segment
is proportional in size to its fitness. A random number is generated and an individual A whose segment
spans the random number is selected. The process is repeated to obtain a partner with the restriction that
if A is selected a new sample is chosen.

When generating variants we employ the traditional evolutionary algorithm approach of constructing a
separate genotype representation upon which to perform modification of a BPD. Our approach allows
the genome structure to closely reflect the phoneme structure. Encodings with this property are believed
to make the evolutionary algorithm more robust (i.e. reduce the probability of fatal mutations), and also
improve the capacity of a system for adaptive evolution.

We employ an adjacency matrix style representation of the underlying graph structure of the BPD for our
genotype, where each matrix element is a vector which stores the reward structures associated with the
given node of a BPD. The phenotype is simply the BPD that is derived from this matrix representation.

Crossover follows naturally from the structure of the genotype representation. Instead of creating a child
by swapping information from two parents based upon one or more points in a linear structure as is
commonly done, we use a rectangular section of the matrix structure selected at random. An offspring is

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



then created by using information from inside the rectangle of one parent, and outside the rectangle of the
other parent.

Mutation is also defined as a mathematical operator, which is applied to specific elements of the matrix
representation of a BPD. This compliments our crossover operator by injecting small local changes to
a BPD. We define mutation to allow for considerable variation of a source BPD. This definition allows
mutations to have two effects on a BPD:

• Re-sequencing: This modification alters the BPD element which defines sequence flows. Specifi-
cally, it alters the relation between two nodes in the sequence Low, replacing the destination node
with a different node, and reconnecting any excluded nodes to follow after the re sequencing. In
effect, randomly reordering the sequencing of a number of tasks in the BPD.

• Parallelization: This modification functions by injecting pairs of parallel merge and fork gateways.
These can be injected at any point other than at start and end elements, and the nodes between
the injected gateways are initially all assigned to one of the parallel paths. Note that when this is
combined with the resequencing operator both parallel branches will eventually contain nodes.

4. CASE STUDY

Baked Goods A/S has two production lines. Line 1 develops cakes and pastries and line 2 develops
baked goods like sausage rolls and pizzas. The company has an approximate overall waste of 20% for all
products during the whole production cycle. The waste is calculated at different places on the production
line, but currently it is only possible to get the overall waste percentage of a product. The production
process is shown in Figure 2. The dough is prepared, then the product, for example a cake, is prepared and
made, then baked or frozen, followed by packaging and then shipment. Dough leftover during production
is reused in the preparation of new dough. Quality checks take place during and after production as well
as after freezing where defective products are discarded.

Depending on the line and product, the packaging is either automatic or manual and either controlled for
number of pieces and weight or just number of pieces.

The processing steps are as follows;

1. Dough mixing. The ingredients for the dough are mixed in vats with a screw-hook mixer. Water
and flour are delivered automatically through transport tubes, all other ingredients are manually
added including ice.

2. Lamination. If specified the dough is laminated, meaning folded in on itself and rolled out. This
takes place continually. Dough is supplied into a dispensing system. The dough is split into two
sheets of continues length, and if specified, a layer of fat is supplied in between these layers. The
lamination step can be skipped by using the second dispensing machine situated further up the
production line.

3. Make-up and filling. Make-up refers to cutting the shapes out from the dough carpet. The product
can also be filled with creams etc.

4. Leavening. This is done to induce a faster rising of the product in order to achieve the wanted
volume of the product. This is done by raising the temperature and having a high humidity. This
will promote the growth of yeast producing gas and the humidity will counteract surface drying
allow for the dough to expand without generating stress cracks etc.

5. Baking. A baking step can be used after leavening.
6. Freezing.
7. Packing.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



Figure 4: The production process at Baked Goods A/S.

4.1. Analysis of the case study

To illustrate an application of this method we will consider a specific example of a simple production
process inspired from the baked goods case study involving bread production. To employ the method, one
begins by building a BPD model of an existing production process. fig. 5 is an example of such a process
which is annotated with rewards and information about its stochastic behaviour. This naively-designed
production process consists of two processes, Conveyor Belt modelling the actions of the machines on a
conveyor belt, and Filling Robot which models the actions of robot which fills the dough with cream etc.
when needed.

Figure 5: BPD model of a baking workflow process before optimization.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



For the production process described in fig. 5 it would be desirable to see an improvement in the time
taken for a conveyer belt machine to complete baking a cake. This is in other words the optimisation goal.
Further, it would also be desirable that the rate of filling consumption and the consequent probability,
given a specific filling stock size, of running out of the filling is kept as low as possible. This is the second
optimisation goal.

In addition to the optimisation goals, a number of functional requirements exist for this process (formally
expressed using the temporal logic PCTL in SBOAT). These requirements describe the sequences the
steps the process have to be in:

1. The baking of the dough should take place before the leaving process of the dough.
2. All dough making, leaving, cut and filling, must take place before a cake is packed:
3. The conveyer belt machine cannot pack the cake before it has received filling.
4. The Filling Robot must ensure that a filling has been prepared and measured before it is sent to the

conveyor belt.
5. When the conveyer belt determines that a bad dose of filling has been received it must immediately

request a new dose.

Note that the final functional requirement (item 5) is not currently satisfied by the initial BPD shown
in fig. 5.

Figure 6: BPD model of a baking system after 28 generations of population size 500 optimisations.

fig. 6 illustrates one possible outcome of applying our optimisation methods to the BPD shown in fig. 5.
Specifically, this is the outcome of 28 generational improvements of population size 500 of the process.
Note that the new functional requirement (item 5) is now satisfied. In the case of this example the
rates for sequencing and parallelizing are set so that the Mutate function ensures that considerably more
re-sequencing modifications are performed than parallelization modifications.

In this run of our optimisation method we have identified two opportunities to parallelize actions. Within
the Filling Robot process, the filling can be prepared and measured at the same time. In the conveyer belt
process, it is possible to prepare dough and cut it while the dough simultaneously leaves. In both cases
this saves time, as when performing actions in parallel only the path with the slowest behaviour is counted
towards the parallel sections contribution to the reward value.

We have also determined that, in this simplified example, the conveyer belt process always orders filling to
finish the cakes but the conveyer belt machines must wait while the Filling Robot performs its operations

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



and then returns the filling. As the filling will inevitably be needed, and only the packing of the cake
needs to be done after the dough has been made, it is within the functional requirements for the process,
and results in a considerable time saving to order the filling immediately before even preparing the dough.
This ensures that there will be no delay imposed on the Conveyer Belt process by the actions of the Filling
Robot process. This simplified optimisation example does not violate the functional requirements and
results in a significant reduction of the time taken for the execution of the production process.

Existing languages for the modelling of business processes such as BPMN, UML activity diagrams or
YAWL lack a formalised semantic basis which would enable formal analysis and subsequent automated
scheduling. Further, these languages do not allow for modelling stochastic behaviour or provide mecha-
nisms to effectively track the consumption of resources during execution. These aspects are therefore the
key strengths of this optimisation method as no other method, to our knowledge, has all these features.
Further, it should be noted that our method by employing the PRISM tool calculates exact values. How-
ever, this need for precision also means that a disadvantage of our approach is that it requires detailed
knowledge of the workflow processes being optimised. Another disadvantage of our method is that to
use the optimisation schedule in practice great computing power is needed which can be both expensive
and time-consuming. However, our method allows for automatic optimal scheduling with mathematical
precision and within specific parameters which can help organisations limit waste of, for example, energy
or material as well as optimise production with regard to parameters such as time, human resources and
cost.

5. CONCLUSION

In this paper we have presented a framework for the automated restructuring of workflows that allows
one to minimise the impact of errors on a production workflow. We did this by means of a formalised
subset of the Business Process Modelling and Notation (BPMN) language. The frameworks modelling
language is extended to include the tracking of real-valued quantities associated with the process (such
as time, cost, temperature). In addition, this language also allows for an intention preserving stochastic
semantics able to model both probabilistic- or non-deterministic branching behaviour. We further extend
this formalism to allow for the introduction of error states which allow for both fail-stop behaviour and
continued system execution. We employed stochastic model checking to efficiently explore the entire
statespace of a workflow. The temporal logic PCTL is used to encode properties of interest for model
checking (e.g. the probability that the next error-free product will come off the production line in less than
60 seconds). We presented an algorithm that allows for the weighted generation of PCTL queries that may
be used to express a desired balance between the occurrence of errors and data quantities associated with
the workflow.

We explored the practical utility of this approach by means of a case study from the food industry. The
case showed that the framework could be used to reduce the risk of production faults and that the impact
of these can be minimised by restructuring the production workflow.

The key strength of this approach is fully automated and only the modelling of the production workflows
and the expression of the goals require manual input.

Further research will focus on refining this framework and the software tool, SBOAT. We hope to release
this tool in late 2014 and use it in several case studies. This will allow for a more extensive formalised
exploration of the scope and parameters of this method.

ACKNOWLEDGEMENTS

We would like to thank the Inspire project for funding.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii



REFERENCES

[1] D. R. Christiansen, M. Carbone, and T. Hildebrandt, “Formal semantics and implementation of
BPMN 2.0 inclusive gateways”, in Proceedings of the 7th international conference on Web services
and formal methods, M. Bravetti and T. Bultan, Eds., ser. Lecture Notes in Computer Science,
vol. 6551, Berlin, Heidelberg: Springer-Verlag, 2011, pp. 146–160, ISBN: 978-3-642-19588-4. DOI:
10.1007/978-3-642-19589-1_10.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third Edition,
3rd. The MIT Press, 2009, ISBN: 0262033844.

[3] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability”, Formal Aspects of
Computing, vol. 6, no. 5, pp. 512–535, 1994, ISSN: 0934-5043. DOI: 10.1007/BF01211866.

[4] L. Herbert and R. Sharp, “Quantitative analysis of probabilistic BPMN workflows”, in ASME
2012 International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference (IDETC/CIE2012)), ser. ASME Conference Proceedings, (Awaiting
Publication), Jul. 2012.

[5] M. Z. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: verification of probabilistic real-time
systems”, in Proceedings of the 23rd International Conference on Computer Aided Verifica-
tion (CAV’11), G. Gopalakrishnan and S. Qadeer, Eds., ser. Lecture Notes in Computer Science,
vol. 6806, London, UK: Springer-Verlag, 2011, pp. 585–591, ISBN: 978-3-642-22109-5. DOI:
10.1007/978-3-642-22110-1_47.

[6] M. Z. Muehlen and J. Recker, “How much language is enough? theoretical and practical use of
the business process modeling notation”, in Proceedings of the 20th international conference on
Advanced Information Systems Engineering, ser. Conference on Advanced Information Systems
Engineering 2008, Berlin, Heidelberg: Springer-Verlag, 2008, pp. 465–479, ISBN: 978-3-540-
69533-2. DOI: 10.1007/978-3-540-69534-9_35.

[7] Object Management Group, “Business process model and notation (BPMN) 2.0”, Object Manage-
ment Group, Needham MA, USA, Standards Document formal/2011-01-03, Jan. 2011. [Online].
Available: http://www.omg.org/spec/BPMN/2.0/.

[8] C. Ouyang, M. Dumas, and A. H. M. T. Hofstede, “Pattern-based translation of BPMN process
models to BPEL web services”, International Journal of Web Services Research (JWSR), vol. 5, no.
1, pp. 42–62, 2007. DOI: 10.1.1.143.3118.

[9] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst, “From BPMN process
models to BPEL web services”, in Proceedings of IEEE International Conference on Web Services,
Washington, DC, USA: IEEE Computer Society, 2006, pp. 285–292, ISBN: 0-7695-2669-1. DOI:
10.1109/ICWS.2006.67.

[10] D. Prandi, P. Quaglia, and N. Zannone, “Formal analysis of BPMN via a translation into COWS”, in
Proc. of the 10th international conf. on Coordination models and languages, ser. COORDINATION
2008, Berlin, Heidelberg: Springer-Verlag, 2008, pp. 249–263, ISBN: 3-540-68264-3, 978-3-540-
68264-6. DOI: 10.1007/978-3-540-68265-3_16.

[11] R. Pugliese and F. Tiezzi, “A calculus for orchestration of web services”, Journal of Applied Logic,
vol. 10, no. 1, pp. 2 –31, 2012, ISSN: 1570-8683. DOI: 10.1016/j.jal.2011.11.002.

[12] O. for the Advancement of Structured Information Standards (OASIS), “Web services business
process execution language (WS-BPEL) version 2.0”, Standards Document WSBPEL-v2.0-OS,
Apr. 2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

[13] D. J. White, Markov decision processes. New Jersey, USA: John Wiley & Sons, 1993, ISBN:
9780471936275.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

http://dx.doi.org/10.1007/978-3-642-19589-1_10
http://dx.doi.org/10.1007/BF01211866
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.1007/978-3-540-69534-9_35
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1.1.143.3118
http://dx.doi.org/10.1109/ICWS.2006.67
http://dx.doi.org/10.1007/978-3-540-68265-3_16
http://dx.doi.org/10.1016/j.jal.2011.11.002
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	Introduction
	RELATED WORK
	Framework
	Core BPMN
	Extending Core BPMN
	Probabilistic CTL Property Specification
	SBOAT
	Evolutionary algorithm

	CASE STUDY
	Analysis of the case study

	CONCLUSION

