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Abstract: Minimization of energy loss of water supply networks is a major concern of pump power
reduction for sustainable water systems in buildings. This paper presents a mathematical model for
energy loss optimization in a common basic T-shaped water supply piping network that serves infinite
probabilistic demands. Optimized designs based on proper network pipe sizes are analyzed. Optimal
pipe radius ratios (2"7 to 2*7) and their corresponding energy implications in the network are also
discussed. The results show that existing piping designs are not optimized for probabilistic demands
and there is potential for energy loss reduction.
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List of symbols

C.c Constant and its matrix element

E,e Energy and its matrix element (J)

F Function as defined

f Friction factor (-)

i, j,l Dummy variables as defined

L Length (m)

m Number of independently operated appliance
n State of a binary operated appliance

P,p Pressure and its matrix element (Pa)

9,0 Demand probability and its matrix element (-)
7’ Radius (m)

Vv Volumetric demand flow rate and its matrix element(m’s ")
A Change of

[ ] { } Matrix notation and matrix element group

o] Density (kg m °)

iy Dummy parameter group as defined
Superscript

¢ Derivatives

Subscript

0,1,2,3,4,... Ofconditions 0, 1, 2, 3, 4, ... as defined

c Of constant

i, j,l,m,n Of i-th, j-th, I-th, m-th, n-th conditions as defined
max Of maximum value

opt Of optimum

R Of pipe radius ratio

Vv Of volumetric flow rate
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1. INTRODUCTION

Potable water demands are unsteady, random and intermittent [1]. As survey studies indicated that the
end-use water demand probability is generally less than 0.1 even during daily rush hours [2,3],
demand overload is legitimate in the design of water supply pipe network inside the building.
Statistical methods for estimating appliance usage patterns and associated instantaneous water
demands have been developed to size mains water pipes [4]. To ensure supply certainty rather than
optimality, the existing design approach to determine fixture units may overestimate the simultaneous
water demand and oversize water pipes [5]. Alternatively, Monte Carlo simulations can be used to
decide the failure probability density function of the water supply system, which is influenced by the
occupant load profile, for meeting the demand and assessing the performance [6].

Distributing a supply of water as uniformly as possible over a territory through piping networks is a
classical problem of optimization. An urban water supply study showed that 45% of the total pumping
energy needed to deliver water from the treatment plants to households was consumed inside buildings
[7]. Apart from building height, energy loss at supply pipes is another concern. Under steady
conditions, Bejan’s constructal law of the generation of flow configuration is a proven useful tool for
optimizing the geometric layout of schemes by minimizing pumping power requirements for
distributing water uniformly over an area [8,9]. However, with respect to the optimal operation of
water supply networks in buildings where flow rates are unsteady, there are no existing models
systematically optimizing energy efficiency and interrelated issues.

This paper dealt with the energy loss optimization problems of a common basic T-shaped water supply
piping network that serves infinite probabilistic demands and established a mathematical model for the
required minimum water pumping energy under a fixed pipe volume constraint. Energy loss reduction
potential through proper pipe size was also investigated. The results were discussed in terms of their
implications for theory and practice.

2. ENERGY LOSS
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Figure 1. A basic T-shaped water supply piping network
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Figure 1 shows a basic T-shape water supply piping network that a branch pipe of length L, and of

radius 7y, fed by a centre main water pipe of length L, and radius 7 . The network consists a supply
root and two demand ends as in a T-shape construct [8]. A demand in the network is due to a number
of independently operated appliances n,,n,,...n,, at each of the two demand ends and each appliance

demand is characterised by a constant flow rate v=C, and a probability @ = 3. The flow rate

between two consecutive demands is assumed zero with a probability ¢ =1—8. As an appliance is
either ‘in demand’ (7 =1) or ‘not in demand’ (7 =0), an appliance demand can be described by,

{0l v 0w o {1-9,.8, i =12,..m (1)

Appliances are arranged according to their ‘in demand’ flow rates [V1a81] , [V2,82] y e

b

[vm,Sm] such that v, <v, <...<v_and expressed the flow rates in terms of v, =C, and

v, v Vo ..
v=|C<0,-L,2,.. =L —m | then a demand at the demand end is given by,
i ' Vi 'y

v=C{0LC,,..C, ,C, };C, =1<C, <..<C,

m 2 m-1

<c, )

m

The demandsyv, ; at the two branchesi, j fed by them binarily operated appliances are probabilistic.

o . . m . .
There are 2" combinations of demands in each branch pipe, and (2 ) cases at the junction where two
branches meet, throughout the centre pipe or at the root. For a pair of demand endsi, j, the demand

probability at any instant is @, (denoted as ¢, ) and the corresponding demand probabilities are

expressed by,

Q= { (p”,...,(o(l)(zm )""’(0(2"’)(1)""’(0(2"’ )(2”)}
0, =99, 9.9, =[] 9 (1-8)" 3)

iand j are dependent on the number of end demands m,

i,j=1+> " 2"n;n =[0]] (4)

The centre pipe demand at the root is the sum of demands due to branch pipes, and given by an

expression below, where a total of (2'”) (2’") combinations of demand pairs are encountered,
V= Vl[v,(p]; V= { vll,...,vl(zm),...,v(zm)(l),...,V(zm)(zm)} 3V =V, (5)

fpC:
TC2

Taking C, =

as the unit pipe friction of turbulent flow, the total pressure loss of the network

AP is determined by the following equations, where AR, and AP, are the pressure losses in the branch
and centre pipes respectively,
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AP[p,¢]=AR[p,0]+ AR[p.¢]; p= {Pm--->Pl(2m),---,P(zmkl),---,P(zm)(zm)}
0 =11

C, L
AP, i p. =1 CoLly o . AP p. =02
0Py T\ =i, =1y, = max(v,v ) [ v Py c:r’ ©)

It is noted for the above expression, the pressure required at the junction between i and j is maintained

for the higher flow rate max(vl. V) )

As the pressure loss at the network is flow rate dependent and hence transient, the energy required for
the pressure loss at the demands is chosen as the optimization parameter. The minimum energy E
required for the water supply network is given by,

E[e,(p] =APV,; e= { 611,...,61(2m),...,e(2m)(1),...,6(2,”)(2,”) }; e; = PV
E= €,0,, + ...el(zm )(P1(z"1) + ...e(zm) 1(P(z"1) | + ...e(zm )(2"‘ )(p(zm )( m) = le ey.(pl.j 7

For a constant pipe volume C, the energy in Eq. (7) can be minimized by choosing a proper pipe
radius ratio C,, = (’”1 / ’”o) for pressure terms p,; in Eq. (6) such that,

2L,r7 +L,iP =C (8)
c 2, 5"
v, = — ——0 ]"2 (9)
1 (Ll Ll 0
Let F be the frictional losses in the branch and centre pipes, where A is an arbitrary constant in the
pressure terms in Eq. (6), the general solution for the optimal pipe radius ratios Cj ,, can be
determined by taking derivative F' =0,
c 2L, L)
F=A\Lyr,” + ML =hLyry” + 0L, (f ——Or(fj (10)
1 1
sYc 2r, .\ 4L
F'==5h Ly +ML| — | ——=20) -—275 =0 (11)
2 \NL L L,
2\, L L
=5k Loty + s(ﬁjrﬂ =0 (12)
1
-1/7 7
r A 2\
CR,opt ==~ = — (13)
o \ 2N\ Ao
The optimal pipe radius ratios Cy ,, for Eq. (6) with probabilities ¢, expressed below can be
determined by taking derivative C ,'mpt = 0 with an optimum demand probability 3, ,
Cp = [C,(p] = { cll""’c1(2'")""’c(zm)(1)""0(2'")(2'")} (14)
CR»apf = Zij cij(Pij (Sapf) (15)
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3. OPTIMAL PIPE RADIUS RATIOS

Three cases for ¢, in calculating the pressure loss at pipe7; and 7, are given below,

27 v,v, >0
17 27 /
2 v, +v. _ { } .
¢, = 23 N PNTE J SV =y maxy, v, vy, #0 (16)
' Ao ). max\v.,v,
i 7 V. +V.
23/7 ! J

V. v,
It is noted for all positive demands, the term 1< L < 2 for all demand probabilities 0,
maxiv,.,v f ) '
the optimal pipe radius ratio C, ,, exists only in a range between 2" and 277, ie.
27 < Cp,p <27 (17)

According to an earlier study, the case of demand probability 9 = 1is actually a steady flow condition
and the optimal pipe radius ratio determined for it is 237 [8].

M=oy 223

E(Cg9=1)

ElCpSope |

E(C5,9~0)

opt

Figure 2. Relative pumping energy

Figure 2 illustrates the schematic relationships between the energy loss £ for probabilistic demands
and pipe radius ratio 2 <C < 27 Pipe radii at Cy, = 2% optimized for the maximum demand (at
the demand probabilities 3, =1) are not energy loss optimized for the cases of minimum demands (i.e.

8, ~0) and vice versa. An optimized probability 3, exists as the energy loss at the boundaries of

C,.

The minimum energy loss E,, can be derived by the two extreme demand cases, i.e. 9, ~ [O,l]. The

optimal probability, given by F below, is determined by taking such that,

=Gt o Plon o) (18)
_n3 2m / m
F=2"(1-9,f" +27¢? (19)
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F'==27(2m) (1= 8, " +27"(2m)9>"" =0 (20)
8opt :2 1 (21)

can be determined for the two extreme demand cases (i.e. Cy ,, ) using the general equations

C

of order m =1 and validated via the general equations of order m = 2 . It should be noted that Eq. (20)
approximates the optimum without taking the influences of demand flow rates C), in elements c;,

R,opt

where 7j # (1)(1),(2")(2™), into account. This point shall be examined in the validation section below.

4. OPTIMAL PIPE RADIUS RATIOS (USING GENERAL EQUATIONS OF ORDER
m=1)

When m =1, water is supplied to two identical binary operated appliances# : {0,1}, one on each side
of the T-shaped piping network. Hence, there are 2" = 2 demand combinations in each branch pipe

and (2'”)Z =4 demand combinations at the junction, throughout the centre pipe or at the root of the
network.

n {01} ; v:C {01} ; o: {1-9,,9,} (22)
Centre pipe demand V) is determined by V', =V, [v, (p] ,
V= {VmV]z,Vz],sz,} = {vl +v, v+ v, v, VY, Y, + v2}= C, {0,1,1,2} (23)

For the binary operated appliance n,,

0 ;i,j=1
n, z{ .. 5 O :(1_‘91) 30, =9, (24)
1 i,j=2

(P:{ (Pna(Plza(lea(Pzz} :{ (PI(PI’(PI(PZ’(PZ(PZ’(PZ(PZ}
- { (1_81)2=81(1_91) 381(1_91) 9812} (25)

Taking the total pressure loss of the network C, = ,the total pressure losses of the network,

pC;
n’
branch and centre pipes AP, AF,, AP, are determined by the following equations,

AP[p,(p]ZAPO[p,(p]+APl[p,(p] P = {pnapu’pzlapzz} >

C,L C,L C,L L, L, L
APy : p=10,—2"0y2 —020,2 0020 =C,e0,—2,—2, =2
0P { Cry ? Cry 2 Clry ? ‘ o

CL , CL ,CL .. L L 4
A :p:{o’ Cvgn; & ’Cvgr} " ’Cvgr} (2v.) } :CO{O’_;’_SI’_SI}

L, L L, L L L
AP:p=Cyi0,—%+—,—++—,—+4—+ (26)
nh nh o h h h
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The energy loss E at the network is expressed by,
L, L L, L L L
E:e= {ella €12-€35 ezz} = COCV{O’ [_2 +_51} [_g +_;]’ 2(_2 + 4_;]}
nhh h nh h o h

E= cocv(0+ 2(1-9, )SI[L—2+£§] +2912[L—g+4£;n (27)

nh N o h

Energy loss E is optimized under a given pipe volume constraint C . Taking 80[” =27, the optimal

pipe radius ratio 3, = 27! is given by,

Cpie=1{2772"2V 277} (28)
Co=2"(1-9,) +(2"7) 2(1-9,)9, +2779? (29)
Cp=2"(1-9, ) +(2"7) 2(1-9,)9, +277982 =0 (30)
Coow =2(1-9, F+(2"7) 2(1-8,,)8,, +27797, =2% G1)

Figure 3 illustrates the relative energy loss £ / E,, required at a T-shaped water supply piping network
when m =1and Figure 4 is the corresponding graph of optimal pipe radius ratio against demand
probability. They confirm the range of optimal pipe radius ratios Cy,, € [21/ 72 7] at the boundary

conditions illustrated in Figure 2, i.e. the minimum and maximum demand probabilities are 9 ~ 0 and
9 ~ 0 respectively.
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1.3
1.3

z 5 1.2 1
EE 1.2

1.1 A
1.1

1 1 . . . .
0 0.2 0.4 0.6 0.8 1
Cr Demand probability 3
Figure 3. Relative energy loss at a T-shaped Figure 4. Optimal pipe radius ratios, m =1

water supply piping network when m =1

Eq. (30) gives 3,,, = 0.5, which when substituted into Eq. (29) yields 8,, = 0.5, as shown in Figure 3.
If C

compared with any optimal cases with a single set of demand probabilities. If CR,OP, =277 s

optimized for the steady flow, the additional energy loss is 13-16% as compared with the optimal
cases where demand probabilities are in between 0.001 and 0.1.

Ropt = 277is applied to all demand probabilities, up to 4.2% more energy loss can be produced as
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5. OPTIMAL PIPE RADIUS RATIO VALIDATION (USING GENERAL
EQUATIONS OF ORDER m =2)

Validity of the pipe radius ratio C Ropt = 277 s tested in this case. When m = 2, two binary operated

appliances (1,,1,) demand probabilities (9,9, ) and thus two demand flow rates (CV,CVC,,) exist at
each demand end, i.e.

n {01} v:C {00} 9:{ 1-9,,9,] (32)
n, {01} v:C,C 00} s 9:{ 1-9,.9, (33)

There are 4 (= 2'") demand combinations in each branch pipe,
v={v.vv.v} ={0LC1+C, | (34)

Correspondingly, there are 4x4=16(= 22'") demand combinations at the junction, in the centre pipe
and at the root.

For the binary operated appliances n,,n,, the centre pipe demand n,,n,,1s, with matrix elements of
v, are given in Table 1,

V= { V11JV12JV13’V14’V21wvv44} (35)
i,j=1+m+2n,; n,=[0,] (36)
1-n ¥ 1-n
(0:{ (011:(012“--’(”44}; Oy =QP;; @ :‘91’12(1_91) 2‘9211(1_‘92) l (37
Table 1. Matrix elements for general equations of order m =2
iiny,n
. -1 -1 ok Yaie! Moo
l‘j B Cv [Viavj] Cv Vij (Plj :(pi(pj APO 'Cv CO py APl 'Cv CO py Cv_lc()_leij ¢
Jimy,m ‘
a-9Y
11 | 0000 0,0 0 s 0 0 0 93/7
(1-3,)
(1-9,)
12 | 0001 0,1 1 9, (1-9,) Lorg” L Lorg> + Ly V7
(1 -9 ) -5
2 2 =5 2 -5 3 L(»ro
13 | 0010 0, Cy Cy 8, (1-3,) CyLyr, CipLin Cy . V7
+ L7
4, (1 -9 ) 3
1+C (1+Cy ) Lory s | (1+6)
14 11 | 0,1+C 1 9. (1-9 v ) LoTo 2 -5 V7
00 14 . ( 2) (l+ CV) Lin (Lnrnis ) Llrfs) 2
21 0100 1,0 1 same with ij =12
_ _ Lo”oi5
22 | 0101 1,1 2 (1-9,)*93 Lory® 4L, 2 [+4L,r,’5 ] 23/7
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el |9 (1-39) (1+6,) 271+ ¢, Y7
+ ——
23 | o110 | 1, Cy e, (-9,) CiLyry?® (+C, PLy? Ly ¢,
+(1+G, ) L
(2+CV) 21/7(2 C )2/7
2+C 2L 27 .75 , EaCRED A
2 ot | ey | 2] gpoags [ (rO TR | RGP e Y | TG
+(2+Cy)zl1r1’5
31 | 1000 Cy,0 Cy same with ij =13
1+C .
32 | 1001 | ¢p1 | T same with ij = 23
20}
33 | 1010 | Cp, Cp | 2Cp | 82(1-9,) CiLyry” 4CH Ly Lyry 2317
-%—4Llr1’5
(1+2G) Y7 /7
C N 1+2C 2 -5 2 -5 2 (l+2CV)2
34 | 1011 1+i: I g2s,4(1-9,) (e CpF L™ | (1+2Cy F Ly (4G) Lys® 1+ )7
! +H1+2G,) L
1+Cy st .
41 1100 | 1+Cp,0 same with ij =14
2+C .
42 | 1101 | 1401 | 2TYY same with ij = 24
1+Cy, 1+2 .
43 1110 g 26 same with ij=34
CV
2 2(1+¢, )
1+Cy, 2 -5 v
44 | 1111 1+(f (1+G)| 9793 (1+Cy Loy 41+ Cp ) Ly (Lo +aLs)| 237
Vv

The pressure loss required at the network AP and the corresponding pressure loss are given by, where
the matrix elements p,,e; are summarized in Table 1 for easy reference,

AP[p,(p]z APO[p,(p]+APl[p,(p] s P = {pnrp121p131p14rp211~--’p44}
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Figure 5. Relative energy loss for a T-shaped water supply piping network when m =2

Figure 5 presents the relative energy loss for some demand cases while Figure 6 exhibits the optimal
pipe radius ratios for various sets of demand flow rates and demand probability combinations. Again,

they confirm the validity of the C; ,, range and boundary conditions as in case m =1. It can be seen
that demand flow rates (C,, > 1) have some influences on the middle range of demand probabilities

(e.g. 9 =0.1100.9), but not on 9 >0.9 (almost steady flow) or 3 < 0.1 (almost minimal flow).

1.4 1.4
40 08
1.3 1.3
1.2 - 1.2 -
1.1 - 1.1 -
]. I I I T ]- 1 I T T
(@) 0 02 04 06 08 1 (b) 0 02 04 06 08 1

x-axis: Probability 3,
y-axis: Optimum pipe radius ratio CRﬁp,

Figure 6. Optimum pipe radius ratios, m =2

In Figure 6(a), the optimal pipe radius ratios for 3 =0.5 are 1.247 and 1.251 when C, = 4 and 40
respectively. It is noted that typical appliance flow rates are in the range 0.08 Ls™ (shower) to 0.3 Ls-'
(kitchen sink) corresponding to a C), < 4 [10]. In Figure 6(b), the C r.ope values for fixed demand

probabilities ¢, = 0.2, 0.4, 0.6 and 0.8 are 1.218, 1.239, 1.268 and 1.304 respectively if
8(jR,opt ((Pl ’ (PZ )

oo,
values. The findings suggest that C, = 2%7 ~1.22 should be the optimal choice for the design

= 0. As expected, more frequent demands (i.e. ‘larger’ flow rates) lead to higher

C

of water supply piping networks that serve probabilistic demands (at uniformly distributed
probabilities).

R,opt
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6. ENERGY IMPLICATIONS OF EXISTING PIPING NETWORKS

]. T T T T
1 1.1 12 13 14 1.5

Cr

Figure 7. Maximum relative pumping energy at C ,,, = 237

Figure 7 shows the maximum relative energy loss for probabilistic demands with C, =1 to 1.5,

illustrating a potential reduction of energy loss up to 38% at C Ropt = 277 Table 2 exhibits the

common pipe sizes available for water supply systems in buildings [10]. The pipe radius ratios C,
shown are in the range of 1.13-1.47 and many of them are very close to the optimal ratio value
(C Ropt = 277 ~ 1.22) proposed in this work. If the optimal value 1.22 substitutes 1.13 or 1.47, 9-30%
savings in energy loss are achievable. In view of the fact that the smallest pipe is practically employed

in end-use appliances, one more pipe size in between 15 mm and 22 mm, i.e. 15x1.22 mm or 22+1.22
mm = 18 mm, is required for energy loss optimization.

Table 2. Common pipe sizes for water supply systems in buildings[10]

Copper and stainless steel pipes Plastic pipe

Diameter (mm) Cp Diameter (mm) Cp
15 16
22 1.47 20 1.25
28 1.27 25 1.25
35 1.25 32 1.28
42 1.2 40 1.25
54 1.28 50 1.25
67 1.24 63 1.26
76 1.13 75 1.19
108 1.42 90 1.20
133 1.23 110 1.22
159 1.2 160 1.45

It should be noted that for a wide range of sanitation appliances operated at a demand probabilit
typically lower than 0.1 [11,12], a pipe radius ratio based on steady flow conditions (C Ropt = 2Y 73,
leads to an additional energy loss of 14% and 10% respectively, and thus the choice is not optimized
for many water supply systems in buildings. Sizing pipes with C, =277 will be a better choice

corresponding to a less energy loss of 2.6% and 1.5% as compared with the cases of known single set
of demand probabilities.

Typical water supply systems are designed to cope with a design condition of the probable maximum

demand that sufficient pressure is available at all appliance outlets at its design flow rate. The outlet
pressure control is achieved by the user through regulating the flow control valve of the appliance.
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However, this over-provided pressure relates to energy wastage. The significance of this paper is to
understand the required pressure of probabilistic demands. With proper demand control on the
appliance outlet pressure at probabilistic demands, potential pumping energy savings for water supply
networks can be studied.

7. CONCLUSION

This paper presented the general equations for solving energy loss optimization problems associated
with a common basic T-shaped water supply piping network that serves infinite probabilistic demands,
and established a mathematical model for energy loss optimization under a fixed pipe volume
constraint. Potential reduction of energy loss through proper pipe size was investigated and the

optimal pipe radius ratios were found to be in between 2" and 277 The findings suggested that 277
should be the optimal choice for the design of water supply pipe networks that serve probabilistic
demands. They also showed that existing piping designs are not optimized for probabilistic demands
and reduction of energy loss up to 38% can be made at supply networks, with proper demand control
of pumping system.
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