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Abstract: Minimization of energy loss of water supply networks is a major concern of pump power 

reduction for sustainable water systems in buildings. This paper presents a mathematical model for 

energy loss optimization in a common basic T-shaped water supply piping network that serves infinite 

probabilistic demands. Optimized designs based on proper network pipe sizes are analyzed. Optimal 

pipe radius ratios (2
1/7

 to 2
3/7

) and their corresponding energy implications in the network are also 

discussed. The results show that existing piping designs are not optimized for probabilistic demands 

and there is potential for energy loss reduction. 
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List of symbols 

cC,  Constant and its matrix element 

eE,  Energy and its matrix element (J) 

F  Function as defined 

f  Friction factor (-) 

lji ,,  Dummy variables as defined 

L  Length (m) 

m  Number of independently operated appliance 

n  State of a binary operated appliance 

pP,  Pressure and its matrix element (Pa) 

ϕϑ,  Demand probability and its matrix element (-) 

r  Radius (m) 

vV ,  Volumetric demand flow rate and its matrix element(m
3
s

−1
) 

∆  Change of 

[ ] { },  Matrix notation and matrix element group 

ρ  Density (kg m
−3

) 

λ  Dummy parameter group as defined 

Superscript  

‘ Derivatives 

Subscript  

0,1,2,3,4,… Of conditions 0, 1, 2, 3, 4, … as defined 
c  Of constant 

nmlji ,,,,  Of i-th, j-th, l-th, m-th, n-th conditions as defined 

max Of maximum value 
opt  Of optimum 

R  Of pipe radius ratio 

vV ,  Of volumetric flow rate 
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1.  INTRODUCTION 
 

Potable water demands are unsteady, random and intermittent [1]. As survey studies indicated that the 

end-use water demand probability is generally less than 0.1 even during daily rush hours [2,3], 

demand overload is legitimate in the design of water supply pipe network inside the building. 

Statistical methods for estimating appliance usage patterns and associated instantaneous water 

demands have been developed to size mains water pipes [4]. To ensure supply certainty rather than 

optimality, the existing design approach to determine fixture units may overestimate the simultaneous 

water demand and oversize water pipes [5]. Alternatively, Monte Carlo simulations can be used to 

decide the failure probability density function of the water supply system, which is influenced by the 

occupant load profile, for meeting the demand and assessing the performance [6]. 

   

Distributing a supply of water as uniformly as possible over a territory through piping networks is a 

classical problem of optimization. An urban water supply study showed that 45% of the total pumping 

energy needed to deliver water from the treatment plants to households was consumed inside buildings 

[7]. Apart from building height, energy loss at supply pipes is another concern. Under steady 

conditions, Bejan’s constructal law of the generation of flow configuration is a proven useful tool for 

optimizing the geometric layout of schemes by minimizing pumping power requirements for 

distributing water uniformly over an area [8,9]. However, with respect to the optimal operation of 

water supply networks in buildings where flow rates are unsteady, there are no existing models 

systematically optimizing energy efficiency and interrelated issues.  

 

This paper dealt with the energy loss optimization problems of a common basic T-shaped water supply 

piping network that serves infinite probabilistic demands and established a mathematical model for the 

required minimum water pumping energy under a fixed pipe volume constraint. Energy loss reduction 

potential through proper pipe size was also investigated. The results were discussed in terms of their 

implications for theory and practice. 

 

2.  ENERGY LOSS 
 

 
 

Figure 1. A basic T-shaped water supply piping network 
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Figure 1 shows a basic T-shape water supply piping network that a branch pipe of length 0L  and of 

radius 0r , fed by a centre main water pipe of length 1L  and radius 1r . The network consists a supply 

root and two demand ends as in a T-shape construct [8]. A demand in the network is due to a number 

of independently operated appliances mnnn ,..., 21  
at each of the two demand ends and each appliance 

demand is characterised by a constant flow rate vCv =  and a probability ϑ=ϕ . The flow rate 

between two consecutive demands is assumed zero with a probability ϑ−=ϕ 1 . As an appliance is 

either ‘in demand’ (n=1) or ‘not in demand’ (n=0), an appliance demand can be described by,  

 

{ };1,0:in { };,0: ii vv { };,1: iii ϑϑ−ϕ m,...,,i 21=  (1) 

 

Appliances are arranged according to their ‘in demand’ flow rates [ ] ,, 11 ϑv [ ] ,, 22 ϑv …, 

[ ]mmv ϑ, such that mvvv ≤≤≤ ...21 and expressed the flow rates in terms of vCv =1 and 
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{ } ;,,...,,1,0
12 mm VVVv CCCCv
−

=
mm VVVV CCCC ≤≤≤≤=

−121
...1  (2) 

 

The demands jiv ,  at the two branches ji, fed by them binarily operated appliances are probabilistic. 

There are
m2 combinations of demands in each branch pipe, and ( )22m cases at the junction where two 

branches meet, throughout the centre pipe or at the root. For a pair of demand ends ji, , the demand 

probability at any instant is jiϕϕ (denoted as ijϕ ) and the corresponding demand probabilities are 

expressed by, 

 

( )( ) ( )( ) ( )( ){ }mmmm ,...,,...,,...,
22122111 ϕϕϕϕϕ =   

;jiij ϕϕ=ϕ ( ) ll
n

l
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l
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lji
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ϑ−ϑ=ϕϕ ∏ 1

1
1,  (3) 

 

i and j  are dependent on the number of end demands ,m  
 

∑ =

−+=
m

l l

l nji
1

1 ;21, [ ]1,0=ln  (4) 

 

The centre pipe demand at the root is the sum of demands due to branch pipes, and given by an 

expression below, where a total of ( ) ( )mm 22
 
combinations of demand pairs are encountered,  

 

[ ]ϕ= ,11 vVV ; ( ) ( )( ) ( )( ){ } ;,...,,...,,...,
22122111 mmmm vvvvv = jiij vvv +=  (5) 

 

Taking
2

2

0 π
ρ

= vCfC  as the unit pipe friction of turbulent flow, the total pressure loss of the network 

P∆ is determined by the following equations, where 0P∆ and 1P∆ are the pressure losses in the branch 

and centre pipes respectively, 
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It is noted for the above expression, the pressure required at the junction between i and j is maintained 

for the higher flow rate ( )ji vv ,max . 

 

As the pressure loss at the network is flow rate dependent and hence transient, the energy required for 

the pressure loss at the demands is chosen as the optimization parameter. The minimum energy E  

required for the water supply network is given by, 

 

[ ] ;, 1PVeE ∆=ϕ ( ) ( )( ) ( )( ){ } ;,...,,...,,...,
22122111 mmmm eeeee = ;ijijij vpe =   

( ) ( ) ( ) ( ) ( )( ) ( )( ) ∑ ϕ=ϕ+ϕ+ϕ+ϕ=
ij ijijeeeeeE mmmmmmmm 2222121221211111 .........  (7) 

 

For a constant pipe volume C , the energy in Eq. (7) can be minimized by choosing a proper pipe 

radius ratio ( )01 rrCR =  
for pressure terms ijp in Eq. (6) such that, 
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LetF be the frictional losses in the branch and centre pipes, where λ  is an arbitrary constant in the 

pressure terms in Eq. (6), the general solution for the optimal pipe radius ratios optRC , can be 

determined by taking derivative 0=′F , 
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The optimal pipe radius ratios optRC , for Eq. (6) with probabilities ijϕ  expressed below can be 

determined by taking derivative 0, =′
optRC with an optimum demand probability ,optϑ    

 

[ ] ;,ϕ= cCR ( ) ( )( ) ( )( ){ }mmmm ccccc
22122111 ,...,...,,...,=  (14) 

( )∑ ϑϕ=
ij optijijoptR cC ,

 (15) 
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3.  OPTIMAL PIPE RADIUS RATIOS 
 

Three cases for ijc in calculating the pressure loss at pipe 1r and 0r are given below, 
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It is noted for all positive demands, the term ( ) 2
,max

1 ≤







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

 +
≤

ji

ji

vv

vv
 for all demand probabilities ijϕ , 

the optimal pipe radius ratio optRC ,  exists only in a range between
712 and 

732 , i.e. 

 
73

,

71
22 ≤≤ optRC  (17) 

 

According to an earlier study, the case of demand probability 1=ϑ is actually a steady flow condition 

and the optimal pipe radius ratio determined for it is 
732 [8]. 

 

 
Figure 2. Relative pumping energy 

 

Figure 2 illustrates the schematic relationships between the energy lossE  for probabilistic demands 

and pipe radius ratio 
7371 22 ≤≤ RC . Pipe radii at 

732=RC optimized for the maximum demand (at 

the demand probabilities 1=ϑij ) are not energy loss optimized for the cases of minimum demands (i.e.  

0~ijϑ ) and vice versa. An optimized probability optϑ exists as the energy loss at the boundaries of 

RC . 

 

The minimum energy loss optE can be derived by the two extreme demand cases, i.e. [ ]1,0~ijϑ . The 

optimal probability, given by F below, is determined by taking  such that, 
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( ) ( ) ( ) 022122 12731273 =ϑ+ϑ−−=′ −− m

ij

m

ij mmF  (20) 

1
2
−=ϑopt  (21) 

optRC ,
 
can be determined for the two extreme demand cases (i.e. optRC , ) using the general equations 

of order 1=m and validated via the general equations of order 2=m . It should be noted that Eq. (20) 

approximates the optimum without taking the influences of demand flow rates 
iV

C in elements ,ijc  

where ),2)(2(),1)(1( mmij ≠  into account. This point shall be examined in the validation section below. 

 

4.  OPTIMAL PIPE RADIUS RATIOS (USING GENERAL EQUATIONS OF ORDER 

m = 1) 
 

When 1=m , water is supplied to two identical binary operated appliances { },1,0:n one on each side 

of the T-shaped piping network. Hence, there are 22 =m
demand combinations in each branch pipe 

and ( ) 42
2
=m

demand combinations at the junction, throughout the centre pipe or at the root of the 

network. 
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Centre pipe demand 1V is determined by [ ] ,,11 ϕ= vVV  
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Taking the total pressure loss of the network ,
2

2

0 π
ρ

= vCfC the total pressure losses of the network, 

branch and centre pipes ,P∆ ,0P∆ 1P∆  are determined by the following equations, 
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The energy lossE at the network is expressed by, 
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Energy lossE  is optimized under a given pipe volume constraint C . Taking ,2
1−=ϑopt the optimal 

pipe radius ratio ,2
1−=ϑopt is given by, 

 

{ }73717173 2,2,2,2: =cCR  (28) 

( ) ( ) ( ) 2

1

73

11

712

1

73 212212 ϑ+ϑϑ−+ϑ−=RC  (29) 

( ) ( ) ( ) 0212212 2

1

73

11

712

1

73 =ϑ+ϑϑ−+ϑ−=′RC  (30) 

( ) ( ) ( ) 7227371273

, 2212212 =ϑ+ϑϑ−+ϑ−= optoptoptoptoptRC  (31) 

 

Figure 3 illustrates the relative energy loss optEE required at a T-shaped water supply piping network 

when 1=m and Figure 4 is the corresponding graph of optimal pipe radius ratio against demand 

probability. They confirm the range of optimal pipe radius ratios [ ]7371

, 2,2∈optRC at the boundary 

conditions illustrated in Figure 2, i.e. the minimum and maximum demand probabilities are 0~ϑ and 

0~ϑ respectively.  

 

  
Figure 3. Relative energy loss at a T-shaped 

water supply piping network when m = 1 

Figure 4. Optimal pipe radius ratios, m = 1  

 

Eq. (30) gives ,5.0=ϑopt which when substituted into Eq. (29) yields ,5.0=ϑopt as shown in Figure 3. 

If 
72

, 2=optRC is applied to all demand probabilities, up to 4.2% more energy loss can be produced as 

compared with any optimal cases with a single set of demand probabilities. If 
73

, 2=optRC is 

optimized for the steady flow, the additional energy loss is 13-16% as compared with the optimal 

cases where demand probabilities are in between 0.001 and 0.1. 
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5.  OPTIMAL PIPE RADIUS RATIO VALIDATION (USING GENERAL 

EQUATIONS OF ORDER m = 2) 

 

Validity of the pipe radius ratio 
72

, 2=optRC is tested in this case. When ,2=m two binary operated 

appliances ( )21,nn  demand probabilities ( )21,ϑϑ  and thus two demand flow rates ( )Vvv CCC ,
 
exist at 

each demand end, i.e. 
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There are 4 ( )m2=   demand combinations in each branch pipe, 
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Correspondingly, there are 4××××4=16 ( )m22=  demand combinations at the junction, in the centre pipe 

and at the root.  

 

For the binary operated appliances ,, 21 nn  the centre pipe demand ,, 21 nn is, with matrix elements of 

ϕ,v  are given in Table 1, 
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The pressure loss required at the network P∆ and the corresponding pressure loss are given by, where 

the matrix elements ijij ep , are summarized in Table 1 for easy reference, 

 

[ ] [ ] [ ] ;,,, 10 ϕ∆+ϕ∆=ϕ∆ pPpPpP { }442114131211 p,...,p,p,p,p,pp =  (38) 

{ } ;,...,,: 441211 eeeeE = ( ) ( )
ijijij v:Vp:Pe 1∆=

 
(39) 
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x-axis: Pipe radius ratio RC   

y-axis: Relative pumping energy optEE   

Figure 5. Relative energy loss for a T-shaped water supply piping network when m = 2 

 

Figure 5 presents the relative energy loss for some demand cases while Figure 6 exhibits the optimal 

pipe radius ratios for various sets of demand flow rates and demand probability combinations. Again, 

they confirm the validity of the optRC ,  range and boundary conditions as in case .1=m  It can be seen 

that demand flow rates ( )1>VC  
have some influences on the middle range of demand probabilities 

(e.g. =ϑ 0.1 to 0.9), but not on >ϑ 0.9 (almost steady flow) or <ϑ 0.1 (almost minimal flow).  

 

  

x-axis: Probability 2ϑ   

y-axis: Optimum pipe radius ratio optRC ,   

Figure 6. Optimum pipe radius ratios, m = 2  

 

In Figure 6(a), the optimal pipe radius ratios for =ϑ 0.5 are 1.247 and 1.251 when =VC  
4 and 40 

respectively. It is noted that typical appliance flow rates are in the range 0.08 Ls
-1

 (shower) to 0.3 Ls-
1
 

(kitchen sink) corresponding to a <VC  4 [10]. In Figure 6(b), the optRC ,  values for fixed demand 

probabilities =ϕ1 0.2, 0.4, 0.6 and 0.8 are 1.218, 1.239, 1.268 and 1.304 respectively if 

( )
=

ϕ∂

ϕϕ∂

2

21, ,optRC
0. As expected, more frequent demands (i.e. ‘larger’ flow rates) lead to higher 

optRC ,  values. The findings suggest that 22.12 72 ≈=RC should be the optimal choice for the design 

of water supply piping networks that serve probabilistic demands (at uniformly distributed 

probabilities). 
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6.  ENERGY IMPLICATIONS OF EXISTING PIPING NETWORKS 

 

 

Figure 7. Maximum relative pumping energy at 
72

, 2=optRC  

 

Figure 7 shows the maximum relative energy loss for probabilistic demands with =RC 1 to 1.5, 

illustrating a potential reduction of energy loss up to 38% at 
72

, 2=optRC . Table 2 exhibits the 

common pipe sizes available for water supply systems in buildings [10]. The pipe radius ratios RC  
shown are in the range of 1.13-1.47 and many of them are very close to the optimal ratio value 

( )22.12
72

, ≈=optRC  proposed in this work. If the optimal value 1.22 substitutes 1.13 or 1.47, 9-30% 

savings in energy loss are achievable. In view of the fact that the smallest pipe is practically employed 

in end-use appliances, one more pipe size in between 15 mm and 22 mm, i.e. 15××××1.22 mm or 22÷÷÷÷1.22 

mm = 18 mm, is required for energy loss optimization. 

 

Table 2. Common pipe sizes for water supply systems in buildings[10] 

Copper and stainless steel pipes Plastic pipe 

Diameter (mm) RC  Diameter (mm) RC  

15  16  

22 1.47 20 1.25 

28 1.27 25 1.25 

35 1.25 32 1.28 

42 1.2 40 1.25 

54 1.28 50 1.25 

67 1.24 63 1.26 

76 1.13 75 1.19 

108 1.42 90 1.20 

133 1.23 110 1.22 

159 1.2 160 1.45 

 

It should be noted that for a wide range of sanitation appliances operated at a demand probability 

typically lower than 0.1 [11,12], a pipe radius ratio based on steady flow conditions ( )73

, 2=optRC  
leads to an additional energy loss of 14% and 10% respectively, and thus the choice is not optimized 

for many water supply systems in buildings. Sizing pipes with 
722=RC will be a better choice 

corresponding to a less energy loss of 2.6% and 1.5% as compared with the cases of known single set 

of demand probabilities. 

 

Typical water supply systems are designed to cope with a design condition of the probable maximum 

demand that sufficient pressure is available at all appliance outlets at its design flow rate. The outlet 

pressure control is achieved by the user through regulating the flow control valve of the appliance. 
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However, this over-provided pressure relates to energy wastage. The significance of this paper is to 

understand the required pressure of probabilistic demands. With proper demand control on the 

appliance outlet pressure at probabilistic demands, potential pumping energy savings for water supply 

networks can be studied. 

 

7.  CONCLUSION 
 

This paper presented the general equations for solving energy loss optimization problems associated 

with a common basic T-shaped water supply piping network that serves infinite probabilistic demands, 

and established a mathematical model for energy loss optimization under a fixed pipe volume 

constraint. Potential reduction of energy loss through proper pipe size was investigated and the 

optimal pipe radius ratios were found to be in between 
712 and 

732 . The findings suggested that 
722   

should be the optimal choice for the design of water supply pipe networks that serve probabilistic 

demands. They also showed that existing piping designs are not optimized for probabilistic demands 

and reduction of energy loss up to 38% can be made at supply networks, with proper demand control 

of pumping system. 
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