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Abstract: This paper describes the method and results of a probabilistic risk analysis that was used to provide a 

quantitative basis for a complex and high-stakes design decision for a deepwater subsea oil project. The analysis 

specified probabilistic simulations of geologic properties based on information from a small number of 

exploration and appraisal wells. Each iteration of the simulated data was then fed into a deterministic engineering 

model to simulate various operational scenarios. Conventional probabilistic sampling and a more efficient 

experimental design approach were both employed. The key results are cumulative density functions for critical 

operational variables that drive design decisions.  
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1.  INTRODUCTION 

In almost all oil and gas projects, incomplete information about the geologic properties of the asset (e.g. rock and 

fluid properties) leads to uncertainties in derivative computations that are used for design decisions. Options are 

available to collect additional information by drilling additional exploration and appraisal wells, by completing 

additional modeling and analysis, etc., but this information typically comes at a significant cost in time and/or 

expenditures. Therefore, at some point in the project maturation process, the cost of additional information 

destroys project value, and decisions of all kinds must be made giving consideration to the residual uncertainty. 

There are numerous decision analysis frameworks and quantitative methods that can be applied depending on the 

decision setting, for example, stochastic and/or deterministic optimization. There is a rich literature that 

demonstrates the application of these concepts and others for oil and gas problems [3,4,5,6,8,9,11,12,13,15,17, 18, 

19,22,25,27].      

In the deepwater oil and gas industry, wells routinely cost over $100 million each, and this expenditure only 

adds one additional data point for analysis. For the project examined in this study, the exploration and appraisal 

drilling phase is complete, and no additional geologic information was going to be obtained prior to most of the 

major design decisions for the project. Therefore, the design decisions are based on assumptions about the 

probability density functions (PDFs) of the geologic properties.  

The design decision examined in this study was the specification of the pressure rating of the wellheads for a 

deepwater subsea oil project, the “Project.” Specifically, the design decision was whether the wellheads should be 

specified for 15,000 psi or 20,000 psi. The 15,000 psi equipment provides less operational flexibility under certain 

geologic and operational outcomes and could cause a loss of reserves, or at least a delay in production. Specifying 

20,000 psi equipment would eliminate almost all of the risks. While the 15,000 psi equipment is readily available, 

the 20,000 psi equipment does not exist and would impose a three to four year delay in the project to allow the 

equipment to be designed, tested, and certified. From a risk analysis perspective, the question is “What is the 

likelihood of a loss or delay if 15,000 psi equipment is specified, given the current assumptions (PDFs) regarding 

the geologic uncertainty?” 

  



2.  WELL ENGINEERING BASICS 
 

2.1.  Wellbore, Wellhead, and Access 

 

A typical wellbore schematic is provided in Figure 1. In a conventional oil well, steel casings are cemented in 

place as the well is drilled deeper and deeper until the oil reservoir is penetrated. At the top of the wellbore is a 

wellhead that is appropriately pressure-rated to contain the maximum reservoir pressure, and to enable monitoring 

and control of fluids. In a subsea setting, the wellhead sits close to the seafloor. Figure 2 depicts a typical subsea 

wellhead. After a well is drilled and the wellhead installed, the well is put on production and flows back to a 

gathering facility through a subsea flow line.  

During the life of a well, it is probable that some form of intervention will be required. Interventions are 

required to repair damage, to re-complete the well in a different reservoir, to plug a depleted reservoir, and for 

other reasons. During an intervention, the wellhead is accessed by a floating drilling rig or similarly capable 

vessel, as depicted in Figure 3. During an intervention, it is possible that a process called “bullheading” will be 

required. In a bullheading operation, a high-density fluid is pumped down the well, displacing the fluid in the well 

back into the reservoir. After a high-density fluid is in the well, intervention operations can proceed in an efficient 

and safe manner. 

 

Figure 1. Generic Wellbore Schematic 

(figure courtesy of the EPA) 

 

  

Figure 2. Subsea Wellhead (typical) 

(figure courtesy of FMC) 

 

 
 

 

Figure 3. Accessing Subsea Wellheads and 

Equipment 

(figure courtesy of Oceaneering) 

 

 



2.2.  Specification of  System Model 

 

When a well is shut-in, the pressure at the wellhead builds up to the reservoir pressure less the hydrostatic 

gradient of the fluid in the well, and this is called the shut-in pressure. If the well is to be bullheaded, the shut-in 

pressure must be increased to overcome the pressure losses in the system, most notably the pressure loss incurred 

when pumping into a permeable reservoir (per Darcy’s Law), or in some cases the pressure required to fracture 

the formation. This pressure is called the bullhead pressure. The expected shut-in and bullhead pressures are  

important inputs into the specification of the pressure rating of the wellhead.  

To estimate the expected bullhead pressure, a common first step is to conduct a simple hydrostatic analysis. If 

the resulting estimate of bullhead pressure leads to an obvious and economic choice, then a more detailed analysis 

probably is not warranted. However, if the resulting estimate of bullhead pressure is close to the cross-over point 

between a lower and higher pressure rating of the wellhead, then a more detailed analysis is warranted, especially 

if the incremental cost of the higher-rated wellhead is significant. In the extreme case where the higher-rated 

wellhead does not exist, the analysis of bullhead pressure may be central to the economic viability of the project. 

A more detailed analysis of bullhead pressures requires a shift from a simple static hydrostatic analysis to a 

more complex dynamic analysis. Modeling a dynamic bullheading operation is not a trivial exercise. The 

information requirements are significant: reservoir rock properties, fluid properties (reservoir fluids and bullhead 

fluids), reservoir pressures, geothermal gradients, mechanical properties of the hydraulic flow path, bullhead rates, 

completion efficiency, and the depletion plan.  

A physics-based deterministic model of the system was specified for the Project that explicitly accounts for 

all of these inputs. The system model serves as the computational core of the subsequent risk analysis.   

3.  WORKFLOW AND RESULTS 
 

The system model is deterministic and solves one case at a time. But as described above, many of the geologic 

variables are defined only as PDFs. Therefore, a workflow was specified that uses the deterministic system model 

in a probabilistic manner. Two approaches were employed. In the following descriptions, a scenario is defined as 

the collection of the PDFs of the uncertain variables. Because there may be uncertainty in the properties of the 

PDFs, it may be desirable to investigate different scenarios. A sample is defined as one random observation from 

each of the uncertain input PDFs for a given scenario. An iteration is one run of the system model using one 

sample. A simulation is the collection of multiple iterations for one scenario.  

Full Probabilistic. A scenario is defined and a simulation is run. Because of the large number of uncertain 

variables, a somewhat large simulation size of 2000 iterations was used. The combination of system model 

complexity and sample size entails significant resource requirements for each simulation. This resource 

requirement increases linearly with the number of scenarios. After the results from a simulation are available, it is 

possible to specify regression models that relate variables of interest, e.g. shut-in pressures and bullhead 

pressures, to the uncertain variables. The resulting models can be used as fast surrogates for the system model for 

future probabilistic analysis or other analytical needs. The surrogates can also be used to make point predictions 

and associated probability statements. This approach has been employed in various oil and gas settings and is 

well-documented in the literature [1,2,10,14,20,21,23,24].  

Experimental Design. In contrast to the large simulation size used in the full probabilistic analysis, one can 

specify a reduced number of iterations for each simulation. That is, the samples are not random, but rather are 

designed to explore the range of uncertainty in the variables. Again, after the results from a simulation are 

available, it is possible to specify regression models that relate variables of interest to the uncertain variables, and 

to use the resulting model as a fast surrogate for the system model. This approach is also known to the oil and gas 

literature [7,16,26,28,29,30,31]. 

 The experimental design, if properly constructed, should yield a regression model of similar explanatory 

power as that from the full probabilistic analysis. So why do it? First, it was desired to demonstrate that the 

experimental design approach produces such an equivalent result. In the future on this project, it may be necessary 



to update the system model and/or run many different scenarios, and the experimental design will be significantly 

more efficient than reproducing the full probabilistic analysis. Also, for other projects in the future, it is desired to 

use experimental design only, and this comparison can be referenced to demonstrate their equivalence. 

 

3.1.  Probabilistic Analysis 

 

The full probabilistic analysis workflow is depicted in Figure 4. Its major steps include sampling, computations 

using the system model, analysis of the cumulative distribution, estimation of the surrogate equation, and finally 

use of the surrogate equation in place of the system model.  

 

Figure 4: Probabilistic Workflow 

 

 
 

 

A probabilistic model was specified for three scenarios representing different reservoir pressure regimes 

(different PDFs): initial conditions, 6 months, and 1 year after initiation of production. This is intended to 

generate information regarding the rate at which the risk is reduced. In each of these scenarios, a simulation was 

run for each of four bullhead flow rates: 1, 2, 3, and 4 bpm. Each simulation consisted of 2,000 iterations. This 

setup results in 3 x 4 x 2,000 = 24,000 model runs or observations. 

The shut-in pressure never exceeds 13,200 psi and thus does not impact the wellhead pressure specification 

decision except as an input into the bullhead pressure computation. The cumulative distribution functions for the 

initial condition scenario and each of the four bull-head rates are depicted in Figure 5. As can be observed in 

Figure 5, the probability that the internal pressure will exceed 15,000 psi during a 1 bpm bullhead operation 

initiated at initial reservoir conditions (worst case) is about 8%. After 6 months of production and pressure 

decline, this same probability decreases to less than 1%, and after 1 year it approaches 0%. As expected, the 

probabilities of exceeding 15,000 psi increase as a function of flow rate. At 2, 3, and 4 bpm bullhead rates the 

probabilities of exceeding 15,000 psi are 30%, 50%, and 70%, respectively. If the 15,000 psi wellhead pressure 

rating is specified, then prevailing conditions will dictate the maximum bullhead rate. These results indicate that it 

is very likely that a 1-2 bpm rate will be attainable without exceeding the wellhead pressure rating. 
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The next step is to specify regression models that relate variables of interest, e.g. shut-in pressures and 

bullhead pressures, to the uncertain variables. The resulting models can be used as fast surrogates for the system 

model for future probabilistic analysis or other analytical needs. For example, if it is desired to analyze a new 

scenario for one or more of the uncertain variables, the surrogate can be used to generate a probabilistic 

simulation in minutes with the caveat that the range of the revised PDFs are not dissimilar from the original 

scenario. 

 

Figure 5: Cumulative Distribution of Maximum Bullhead Pressure for  

Scenario 1 (Initial Reservoir Pressure) 

 

 
 

 

Regression models were specified where the dependent variable was specified as the maximum bullhead 

pressure, and the independent variables were defined as the uncertain variables. Because the system model is 

physics-based and deterministic, it is known that there will be two distinct cases. One case is governed by the 

Darcy equation where the fluid is radially displaced into the pore space of the reservoir. A second case , where the 

Darcy differential pressures are large, is governed by the formation fracture gradient where fluid is displaced into 

the fracture. Note, the Darcy differential is defined as follows: Darcy differential (psi)  
           

  
   

  

  
   . 

 

3.1.1.  Surrogate Model Using the Full Probabilistic Results: The “No-Fracture” Model  

 
In this regression model, the Darcy differential is small and thus no fracture occurs. Initial analysis showed that 

results could be pooled across all three (i) pore pressure scenarios and all four (q) bullhead rates, and the 

regression was specified as               . Based on knowledge of the design of the system model, the 

independent variables are defined using the uncertain variables:    
       

  
,    

           

  
  shut-in pressure, 

oil compressibility, q, and q
2
. The linear and quadratic q terms are to account for friction losses. The radius terms 

are constant for all observations and can be ignored. The results of this regression are provided in Table 1, and a 

plot of the regression model predictions (x-axis) versus the system model output (y-axis) is depicted in Figure 6. 
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Table 1: The “No Fracture” Surrogate Model (full probabilistic) 

 

 
. reg  maxsspresspsi x1 x2 shutinpresssspsi avgcomppsi q qsq if frac10==0   

 

      Source |       SS       df       MS              Number of obs =   13457 

-------------+------------------------------           F(  6, 13450) =       . 

       Model |  3.1840e+10     6  5.3067e+09           Prob > F      =  0.0000 

    Residual |   4657456.3 13450  346.279279           R-squared     =  0.9999 

-------------+------------------------------           Adj R-squared =  0.9999 

       Total |  3.1845e+10 13456  2366590.35           Root MSE      =  18.609 

 

------------------------------------------------------------------------------ 

maxsspress~i |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |    1520749    1074.29  1415.58   0.000      1518643     1522855 

          x2 |     196632   45.71866  4300.91   0.000     196542.4    196721.6 

shutinpres~i |   .9995036   .0003444  2902.04   0.000     .9988285    1.000179 

  avgcomppsi |  -1.11e+08    8891966   -12.49   0.000    -1.28e+08   -9.36e+07 

           q |   11.51706   .8594087    13.40   0.000     9.832496    13.20162 

         qsq |   17.01699   .1727986    98.48   0.000     16.67828     17.3557 

       _cons |   400.5776   35.76365    11.20   0.000     330.4758    470.6793 

------------------------------------------------------------------------------ 

 

 

Figure 6: The “No Fracture” Surrogate Model Predictions versus the System Model (full probabilistic) 
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3.1.2. Surrogate Model Using Full Probabilistic Results: The “Fracture” Model  

 

In this regression model, the Darcy differential is large and fracture occurs. Again, initial analysis showed that 

results could be pooled across all three (i) pore pressure scenarios and all four (q) bullhead rates. The independent 

variables are defined using the uncertain variables: shut-in pressure, fracture pressure minus reservoir pressure, oil 

compressibility, q, and q
2
. The results of this regression are provided in Table 2, and a plot of the regression 

model predictions (x-axis) versus the system model output (y-axis) is depicted in Figure 7. 

 

Table 2: The “Fracture” Surrogate Model (full probabilistic) 

 

 
. reg  maxsspresspsi shutinpresssspsi  deltap avgcomppsi q qsq if frac10==1  

 

      Source |       SS       df       MS              Number of obs =   10543 

-------------+------------------------------           F(  5, 10537) =       . 

       Model |  2.7271e+09     5   545429627           Prob > F      =  0.0000 

    Residual |  2527230.05 10537  239.843414           R-squared     =  0.9991 

-------------+------------------------------           Adj R-squared =  0.9991 

       Total |  2.7297e+09 10542  258933.349           Root MSE      =  15.487 

 

------------------------------------------------------------------------------ 

maxsspress~i |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

shutinpres~i |   .9996581   .0005427  1841.98   0.000     .9985942    1.000722 

      deltap |   .9692905   .0004745  2042.90   0.000     .9683604    .9702205 

  avgcomppsi |  -1.41e+08    7790680   -18.15   0.000    -1.57e+08   -1.26e+08 

           q |   14.91068   1.096346    13.60   0.000     12.76163    17.05972 

         qsq |   16.79008   .1905019    88.14   0.000     16.41666     17.1635 

       _cons |   488.0527   33.86037    14.41   0.000       421.68    554.4254 

------------------------------------------------------------------------------ 

 

 

 

Figure 6: The “Fracture” Surrogate Model Predictions versus the System Model (full probabilistic) 
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Both the “No Fracture” and “Fracture” surrogate models accurately replicate the system model and are judged to 

be acceptable surrogates. 

 

3.2.  Experimental Design 

 

The experimental design workflow is depicted in Figure 7. It is identical to the probabilistic workflow except for 

the first step. Instead of repeated sampling, a smaller set of samples is specified for simulation in the system 

model. That is, the samples are not random, but rather are designed to explore the range of uncertainty in the 

variables. The smaller simulation size reduces the time required for the computations, and specification of the 

PDFs for the uncertain variables is not required. The results of the simulation are used to estimate regression 

models that relate variables of interest to the uncertain variables, and to use the resulting model as a fast surrogate 

for the system model. Of course, when the surrogate equation is used to conduct a probabilistic simulation, the 

uncertain variables would need to be fully specified, and these results could be used to create the desired 

cumulative distribution plots for maximum bullhead pressure as depicted in Figure 5. 

Experimental design was used to specify 72 samples for each of the four bullhead rates. Whereas the 

probabilistic model results in 24,000 observations, the experimental design only requires 72 x 4 = 288 

observations (the full range of reservoir pressure can be sampled rather than sampling the three distinct regimes as 

was done is Section 3.1.). If the surrogate equation from the experimental design is judged to be sufficiently 

accurate when compared to the surrogate from the full probabilistic model, the full probabilistic model does not 

need to be repeated in the future. 

 

Figure 7: Design of Experiments Workflow 

 

 
 

 

3.2.1.  Surrogate Model Using Experimental Design Results: The “No-Fracture” Model  

 

The identical specification of the “No Fracture” model from Section 3.1.1. was specified and estimated on the 

appropriate subset of the 288 experimental design observations. The results of this regression are provided in 
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Table 3, and a plot of model predictions versus the system model are depicted in Figure 8. 

 

Table 3: The Experimental Design “No Fracture” Surrogate Model 

 

 
. reg  maxpress x1 x2 sitp avgcomppsi q qsq if  simplefrac==0 

 

      Source |       SS       df       MS              Number of obs =     146 

-------------+------------------------------           F(  6,   139) = 9575.98 

       Model |   942783887     6   157130648           Prob > F      =  0.0000 

    Residual |  2280827.92   139  16408.8339           R-squared     =  0.9976 

-------------+------------------------------           Adj R-squared =  0.9975 

       Total |   945064715   145  6517687.69           Root MSE      =   128.1 

 

------------------------------------------------------------------------------ 

    maxpress |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          x1 |    1252225   18128.68    69.07   0.000      1216381     1288068 

          x2 |   162545.8   2587.263    62.83   0.000     157430.3    167661.3 

shutinpres~i |   .9771403   .0041214   237.09   0.000     .9689915    .9852892 

  avgcomppsi |  -2.00e+08   3.27e+08    -0.61   0.541    -8.47e+08    4.46e+08 

           q |   8.622247   53.36682     0.16   0.872    -96.89344    114.1379 

         qsq |    14.2422   10.67501     1.33   0.184    -6.864193    35.34859 

       _cons |   910.5656    1164.52     0.78   0.436    -1391.898     3213.03 

------------------------------------------------------------------------------ 

 

 

Figure 8: The Experimental Design “No Fracture” Surrogate Model Predictions versus the System Model 
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3.2.2.  Surrogate Model Using Experimental Design Results: The “Fracture” Model  

 

The regression process was repeated for the appropriate “Fracture” subset of the 288 experimental design 

observations. The results of this regression are provided in Table 4, and a plot of model predictions versus the 

system model are depicted in Figure 9. 

 

Table 4: The Experimental Design “Fracture” Surrogate Model 

 

 
. reg  maxpress sitp deltap avgcomppsi qsq if  simplefrac==1 

 

      Source |       SS       df       MS              Number of obs =     142 

-------------+------------------------------           F(  4,   137) = 1462.83 

       Model |   109718984     4  27429745.9           Prob > F      =  0.0000 

    Residual |  2568899.96   137  18751.0946           R-squared     =  0.9771 

-------------+------------------------------           Adj R-squared =  0.9765 

       Total |   112287884   141  796367.969           Root MSE      =  136.93 

 

------------------------------------------------------------------------------ 

    maxpress |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        sitp |   .8861487   .0205793    43.06   0.000     .8454544    .9268429 

      deltap |   .8370611   .0290006    28.86   0.000     .7797144    .8944079 

  avgcomppsi |  -1.70e+08   3.68e+08    -0.46   0.646    -8.98e+08    5.59e+08 

         qsq |   16.72607   2.052675     8.15   0.000     12.66705    20.78509 

       _cons |   2129.825   1351.013     1.58   0.117    -541.7104    4801.361 

------------------------------------------------------------------------------ 

 

 

 

Figure 9: The Experimental Design “Fracture” Surrogate Model Predictions versus the System Model 
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The surrogate models that are based on the experimental design yield very good fits to the system model results. 

There is more variance in the prediction when compared to the full probabilistic surrogate because of the smaller 

number of observations in the experimental design. However, for this decision-setting, these small differences are 

not decision-relevant, and the experimental design approach is judged to be adequate for analyzing different 

scenarios in the future. 

 

 

4.  NOMENCLATURE 
 

bpm  = barrels per minute 

 

Bo = formation volume factor (rb/stb) 

h  = reservoir thickness (feet)  

k = permeability (md) 

µ = viscosity (cp) 

q  = flow rate (bpm) 

rr = radius of drainage (feet) 

rw  = radius of well (feet)  

s  = skin factor 
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