
A Component-based Approach for Assessing Reliability of Compound
Software

Monica Lind Kristiansena*, Bent Natvigb, and Harald Holonec
aDepartment of Informatics, Østfold University College, Halden, Norway

bDepartment of Mathematics, University of Oslo, Oslo, Norway
cDepartment of Informatics, Østfold University College, Halden, Norway

Abstract: Predicting the reliability of software systems based on a component approach is inherently
difficult, in particular due to failure dependencies between the software components. This paper
describes a component-based approach for assessing reliability of compound software, where failure
dependencies between software components are explicitly addressed. This is done by finding accepted
upper bounds for probabilities that pairs of software components fail simultaneously and then by
including these into the reliability models. To find these accepted upper bounds, the approach applies
principles of Bayesian hypothesis testing on simultaneous failure probabilities. In addition, the restric-
tions imposed on the simultaneous reliabilities and failure probabilities by the marginal reliabilities
and failure probabilities are taken into account. To illustrate the approach, we use an example based on
mobile positioning systems for backtracking. This is for instance used to help people with dementia to
find their way home if they get lost.

Keywords: Failure dependencies, Component-based approach, Bayesian hypothesis testing, Mobile
positioning systems.

1. INTRODUCTION

Before computerized systems can be used in any kind of critical applications, evidences that these
systems are dependable are required [1]. This is desirable for most systems, but essential for systems
which affect human safety and welfare, e.g. mobile positioning systems, patient monitoring systems,
fly-by-wire systems, railway signal systems etc. Considering that most computerized systems are
built as a structure consisting of several software components, of which some might have been pre-
developed and used in other contexts, there is a need for methods for assessing reliability of compound
software 1.

Although several different approaches to construct component-based software reliability models have
been proposed in, among others, Cortellessa and Grassi [2], Gokhale and Trivedi [3], Gokhale [4],
Palviainen et al. [5], Goseva-Popstojanova and Trivedi [6], Hamlet [7,8], Krishnamurthy and Mathur [9],
Krka et al. [10], Kuball et al. [11], Popic et al. [12], Reussner et al. [13], Singh et al. [14], Trung and
Thang [15], Vieira and Richardson [16], and Yacoub et al. [17], most of these approaches tend to ignore
failure dependencies between software components [18–20]. This topic is discussed more thoroughly
in, among others, Cortellessa and Grassi [2], Dai et al. [21], Gokhale and Trivedi [4], Guo et al. [22],
Littlewood et al. [23], Lyu [1], Nicola and Goyal [24], Popic et al. [12], Popov et al. [25], and Tomek et
al. [26].

In our research, we have developed a component-based approach for assessing reliability of compound
software in which failure dependencies between software components are explicitly addressed [27].

∗ Corresponding author, monica.kristiansen@hiof.no
1 Software systems consisting of multiple software components.

The idea is to find accepted upper bounds for probabilities that pairs of software components fail
simultaneously and then include these into the reliability models. To find these accepted upper bounds,
the approach applies principles of Bayesian hypothesis testing [28] on simultaneous failure probabilities.
This includes taking into account the restrictions the marginal reliabilities and failure probabilities put
on the simultaneous reliabilities and failure probabilities.

In Section 2, the motivation of our research is given. This is followed up by a description of our
component-based approach in Section 3. This section also describes the assumptions of the approach
and the direct restrictions on the simultaneous probabilities. In addition, some general rules for
selecting the most important component dependencies are given. These rules are based on the concepts
of data-parallel and data-serial components, which are defined in Section 3.3. In Section 4, the
component-based approach is illustrated with an example from positioning services on mobile phones
for geofencing and backtracking. A summary of the results, some conclusions and ideas for further
work are given in Section 5.

2. BACKGROUND

Our research started by analyzing two interesting papers written by Cukic et al. [29] and Smidts et
al. [30]. These papers present a Bayesian hypothesis testing approach for finding upper bounds for
failure probabilities of single software components. The authors’ idea is to complement testing with
available prior information regarding the software components so that adequate confidence can be
obtained with a feasible amount of testing.

In their approach, the null hypothesis (H0) and the alternative hypothesis (H1) are specified as: H0 : θ ≤
θ0 and H1 : θ > θ0, where θ0 is a probability in the interval (0,1) representing the upper bound for the
failure probability θ of a software component. The upper bound θ0 is assumed to be context specific
and predefined and is typically derived from standards, regulation authorities, customers, etc. In this
case, the null hypothesis states that the software component’s failure probability is lower than the given
predefined upper bound θ0, whereas the alternative hypothesis states that the software component’s
failure probability is higher than the given predefined upper bound θ0.

Furthermore, the authors describe the prior belief in the failure probability (π(θ)) of a single software
component using two separate uniform probability distributions, one under the null hypothesis and one
under the alternative hypothesis. Based on this assumption, the authors show that the number of tests (D)
required to obtain an adequate confidence level C0 so that P(H0|D)≥C0, can be significantly reduced
compared to the situation where no prior belief regarding the software component is described. By
assuming that prior belief in the null hypothesis P(H0) is 0.01, the predefined upper bound θ0 is 0.0001,
and the confidence level C0 is 0.99, the authors show that it requires 6831 fault-free tests to reach the
confidence level by using Bayesian hypothesis testing compared to 46050 fault-free tests by using
classical statistical testing. They also demonstrate that the higher the prior belief in the null hypothesis
is, the fewer tests are needed to obtain adequate confidence in the software component.

Although we think that the principles of the Bayesian hypothesis testing approach proposed in Cukic
et al. [29] and Smidts et al. [30] are usable, even for compound software, our main concern is related
to the use of two separate uniform probability distributions to describe the prior belief in the failure
probability of a single software component. This concern is addressed in Kristiansen [31], in which
an evaluation of the Bayesian hypothesis testing approach is performed. In this paper, three different
prior probability distributions for the failure probability of a software component are evaluated, and
their influence on the number of tests required to obtain adequate confidence in a software component
is presented. In this evaluation, the first case is based on earlier work done by Cukic et al. [29] and

Smidts et al. [30] and assumes two separate uniform prior probability distributions, one under the
null hypothesis and one under the alternative hypothesis. In the second case, the effect of using a flat
distribution under the alternative hypothesis is mitigated by allowing an expert to set an upper bound
on the failure probability under H1, i.e. to state a value θ1 for which the probability of having a failure
probability higher than θ1 is zero. In the third case, the effect of discontinuity in the prior probability
distribution is mitigated by using a continuous probability distribution for θ over the entire interval
(0,1). A beta distribution is used to accurately reflect prior belief because this distribution is a rich and
tractable family that forms a conjugate family to the binomial distribution.

The evaluation in Kristiansen [31] clearly shows that using two separate uniform distributions to
describe the failure probability of a software component does not represent a conservative approach at
all, even though the use of a uniform probability distribution over the entire interval is usually seen as
an ignorance prior. In fact, the number of tests required to obtain adequate confidence in a software
component increases significantly when other more realistic distributions for the failure probability of
a software component are used. Moreover, it is shown that the total number of tests required by using
this approach can both result in fewer and even in more tests compared to classical statistical testing.
This means that in the Bayesian hypothesis testing approach, the number of required tests is highly
dependent on the choice of prior distribution. It should therefore be emphasized that it is the underlying
prior distribution for the failure probability of a software component and underlying assumptions that
lead to fewer tests rather than the Bayesian hypothesis testing approach. To choose a prior probability
distribution for a software component’s failure probability that correctly reflects ones prior belief is
therefore of great importance.

3. A COMPONENT-BASED APPROACH FOR ASSESSING RELIABILITY OF
COMPOUND SOFTWARE

In Kristiansen [27], we propose a component-based approach for assessing reliability of compound
software. In this approach, failure dependencies between software components are addressed explicitly
by using Bayesian hypothesis testing [28] on simultaneous failure probabilities. It is assumed that
failure probabilities of individual software components are known. The approach consists of five basic
steps:

1. Identify the most important component dependencies: based on the structure of the software
components in the compound software and information regarding individual software compo-
nents, identify those dependencies between pairs of software components which are of greatest
importance for the calculation of the system reliability [32]. Repeat steps 2-4 for all relevant
component dependencies in the system.

2. Define the hypotheses: let q0,i j represent an accepted upper bound for the probability (qi j) that a
pair (i, j) of software components fails simultaneously. The upper bound q0,i j is assumed to be
context specific and predefined and is typically derived from standards, regulation authorities,
customers, etc. Define the following hypotheses:

H0 : ai j ≤ qi j ≤ q0,i j

H1 : q0,i j < qi j ≤ bi j,

where qi j is defined in the interval [ai j,bi j]. The interval limits ai j and bi j represent the lower and
upper limit for qi j, respectively, and are decided by the restrictions the components’ marginal
failure probabilities put on the components’ simultaneous failure probabilities [32].

3. Describe prior belief regarding probability qi j: establish a prior probability distribution g(qi j)
for qi j defined in the interval [ai j,bi j] describing the probability that a pair of software compo-
nents fails simultaneously [33]. This probability distribution is needed for establishing a prior

probability distribution π(qi j) for qi j defined in the sub-intervals [ai j,q0,i j] and [q0,i j,bi j] and for
calculating P(H0).

4. Update your belief in hypothesis H0 through testing: based on the prior belief in the null
hypothesis P(H0) from step 3 and a predefined confidence level C0,i j, the number of tests
required to obtain an adequate upper bound for the probability of simultaneous failure can be
found for different numbers of failures encountered during testing. The more failures that occur
during testing, the more tests are required to reach C0,i j. For further details on when to stop
testing see Cukic et al. [29] or Kristiansen et al. [33].

5. Calculate the complete system’s failure probability: information regarding failure probabilities of
individual software components (which are assumed to be known) and upper bounds for the most
important simultaneous failure probabilities (found in step 1-4) can finally be combined to obtain
an upper bound for the failure probability of the entire system. This can be performed by various
methods, e.g. by discrete event simulation when direct calculation becomes too complicated.

3.1. Assumptions

The component-based approach for assessing reliability of compound software is based on the following
assumptions:

1. The states of the software components are associated random variables [35].
2. All data-flow relations between the software components are known.
3. The reliabilities of the individual software components are known [1, 36, 37].
4. The system and its components have only two possible states (functioning and failure) [38].
5. The system has a monotone structure [39].

Furthermore, the research is restricted to on-demand types of situations where the compound software
is given an input and execution is considered to be finished when a corresponding output has been
produced. In the following, these assumptions are discussed briefly.

3.2. Restrictions on the components’ simultaneous reliabilities and failure probabilities

Assumption 1 and 3 put direct restrictions on the components’ simultaneous reliabilities and failure
probabilities. To show this, let pi and p j denote the reliabilities of components i and j in a simple two
component system. Furthermore, let pi j denote the simultaneous reliability of components i and j. If it
can be assumed that the components’ reliabilities do not change due to changes in operational context,
the following is true: pi j ≤ min(pi, p j). This follows directly from the fact that: pi j = pi| j p j = p j|i pi,
where pi| j and p j|i are conditional reliabilities between components i and j.

Furthermore, since we assume that the states of the software components are associated random
variables, it follows that [35]: pi j ≥ pi p j. Reasonable constraints on the simultaneous reliability pi j

under the given assumptions can therefore be expressed as follows: pi p j ≤ pi j ≤ min(pi, p j). In the
same way, under the same assumption, it can be shown that: qiq j ≤ qi j ≤ min(qi,q j).

How the reliabilities of individual software components put direct restrictions on the components’
conditional reliabilities in general systems consisting of two and three components are elaborated in
more detail in Kristiansen et al. [32].

3.3. General rules for selecting the most important component dependencies

To identify possible rules for selecting the most important component dependencies, two new concepts
were defined in Kristiansen et al. [32]. These concepts contribute to a deeper understanding of how to

include component dependencies in reliability modeling, and are given in Definitions 1 and 2.

Definition 1 Data-serial components: two components i and j are said to be data-serial components if
either i or j receives data (d), directly or indirectly through other components, from the other.

i d→ j or j d→ i

Definition 2 Data-parallel components: two components i and j are said to be data-parallel components
if neither i nor j receives data (d), directly or indirectly through other components, from the other.

i d9 j and j d9 i

Based on these definitions, the rules for selecting the most important component dependencies can be
summarized as follows [40]:

- Including only partial dependency information may give a substantial improvement in the
reliability predictions compared to assuming independence between all software components as
long as the most important component dependencies are included.

- It is also clear that dependencies between data-parallel components are far more important than
dependencies between data-serial components.

In addition, for a system consisting of both data-parallel and data-serial components, the following
applies:

- Including only dependencies between data-serial components may result in a major overesti-
mation of the system’s reliability. In some cases, the results are even worse than by assuming
independence between all components.

- Including only dependencies between data-parallel components may give predictions close to the
system’s true reliability as long as the dependency between the most unreliable components is
included.

- Including additional dependencies between data-parallel components may further improve the
predictions.

- Including additional dependencies between data-serial components may also give better predic-
tions as long as the dependency between the most reliable components is included.

4. CASE

One increasingly popular application of mobile positioning systems is to provide geofencing and
backtracking services, for instance for kids or people with dementia. Geofencing is used to alert the
person or her family members if the person moves outside of a predefined virtual fence, typically
surrounding the neighborhood where the person lives and is familiar. Backtracking systems are typically
used for helping the user to find the way back to this familiar area if he/she gets lost. Both these
services require reliable positioning of the mobile device. In addition, the backtracker needs a position
log, keeping track of the users movements over a period of time. Our example case is a backtracking
system.

To ensure effective fault tolerance in the software system, let’s assume it is structured as a typical
recovery block [41]. Individual system components raise exceptions when they detect errors that
their own fault tolerance capabilities are unable to handle. Our example system consists of two
independently developed software components capable of establishing and recording the geographical

(a) A control flow diagram describing the mo-
bile positioning system.

x1 x2 x3 x4 φ (x)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

(b) Possible component and system
states.

Figure 1: Example case

position of a mobile device. We refer to these two components as super component 1 (S1) and 2
(S2). In addition, a controller is responsible for defining the interactions between the components and
performing acceptance tests on the components’ output. The system is illustrated in Figure 1(a).

S1 consists of two sub components, C1 and C2. C1 uses the GPS receiver on the mobile phone for
establishing the device’s geographical position. C2 takes information from C1, transforms it, and
updates the position log. The other super component, S2, consists of sub components C3 and C4. C3
uses mobile network and WiFi information to establish the device’s geographical position, and C4
updates the position log after transforming the output from C3 to a suitable form. For simplification, it
is assumed that the controller, including the acceptance test, is fault free.

S1 and S2 are not run in parallel like in N-version programming. When logging the current device
position is requested, the controller first establishes a checkpoint of the system state (including the

position log) to permit recovery. Then, C1 is invoked to establish the current device position. On
success, the controller passes the result from C1 to C2, which transforms it to a suitable form and
adds the current position to the position log. The acceptance test is used by the controller as a final
check of the newly logged position. If the acceptance test fails, or if C1 or C2 raises an exception, the
controller restores the prior system state, and invokes C3 to provide the position. On C3’s success, C4
gets position information from C3, transforms it and adds it to the position log. If the resulting update
to the position log fails the acceptance test, or if C3 or C4 raises an exception, the system fails.

Let’s assume that the software system and its components have binary states. Let xi i = 1,2,3,4 indicate
the state of the ith component at a fixed point in time and let x = (x1,x2,x3,x4). Let’s further assume
that the system state, φ , at a fixed point in time is uniquely determined by the states of the components,
x, i.e. φ = φ (x). For i = 1,2,3,4, let xi = 0 if component i fails and 1 if component i functions. The
possible component and system states are given in Figure 1(b), which includes the following two
system states:

φ (x) = 0 = system fails
φ (x) = 1 = system functions

Based on the software system’s minimal path sets, the reliability of the software system is given by:
P(φ (x) = 1) = p12 + p34− p1234. Let’s assume that the marginal reliabilities and failure probabilities
for components 1, 2, 3 and 4 are known. This knowledge and the assumption that the states of the
software components are associated random variables, put direct restrictions on the components’
simultaneous reliabilities and failure probabilities (see Section 3.2 for more details). This is shown
in Table 1. Based on the restrictions on the components’ simultaneous reliabilities in Table 1, the
reliability of the complete system must be within the interval [0.9988011,1.0000].

Table 1: The components marginal reliabilities and failure probabilities and their restrictions
on the components simultaneous reliabilities and failure probabilities.

Marginal reliabilities Marginal failure probabilities
p1 = 0.99 q1 = 0.01
p2 = 0.9999 q2 = 0.0001
p3 = 0.999 q3 = 0.001
p4 = 0.9999 q4 = 0.0001
Simultaneous reliabilities Simultaneous failure probabilities
p12 ∈ [0.989901,0.99] q12 ∈ [10

-6,10−4]
p13 ∈ [0.98901,0.99] q13 ∈ [10

-5,10−3]
p14 ∈ [0.989901,0.99] q14 ∈ [10

-6,10−4]
p23 ∈ [0.9989001,0.999] q23 ∈ [10

-7,10−4]
p24 ∈ [0.99980001,0.9999] q24 ∈ [10

-8,10−4]
p34 ∈ [0.9989001,0.999] q34 ∈ [10

-7,10−4]
p123 ∈ [0.988911099,0.99] q123 ∈ [10

-9,10
-4]

p124 ∈ [0.98980201,0.99] q124 ∈ [10
-10,10

-4]
p134 ∈ [0.988911099,0.99] q134 ∈ [10

-9,10
-4]

p234 ∈ [0.99880021,0.999] q234 ∈ [10
-11,10

-4]
p1234 ∈ [0.988812208,0.99] q1234 ∈ [10

-13,10
-4]

One of the rules for selecting the most important component dependencies in Kristiansen et al. [32], state
that including the dependency between the most unreliable data-parallel components gives predictions
close to the system’s true reliability. In our example, the most unreliable data-parallel components are

components 1 and 3. When only including the dependency between components 1 and 3, the reliability
of the complete software system becomes: P(φ (x) = 1) = p1 p2 + p3 p4− p4 p3|1 p2 p1.

Let’s assume that it is required that the reliability of the software system (P(φ (x) = 1) is at least 0.9999
with confidence level C0 = 0.99. Based on this requirement and the addition law of probability, a
predefined upper bound q0,13 for the simultaneous failure probability q13 can be calculated, This is
shown in Equation 1.

q13 = 1− p1− p3 + p13 ≤ q0,13

= 1− p1− p3 +(
p1 p2 + p3 p4−0.9999

p2 p4
)

= 0.00009891 (1)

Based on the upper bound q0,13 and the restrictions [a13,b13] on the simultaneous failure probability q13
given in Table 1, the following hypotheses can be defined (see step 2 in the component-based approach
in Section 3 for details):

H0 : 0.00001≤ q13 ≤ 0.00009891

H1 : 0.00009891 < q13 ≤ 0.001. (2)

In this case, the null hypothesis states that the simultaneous failure probability q13 lies between the
lower bound a13 = 0.00001 and the predefined upper bound q0,13, whereas the alternative hypothesis
states that the simultaneous failure probability q13 lies between the predefined upper bound q0,13 and
the upper bound b13 = 0.001.

In the following, the number of fault free tests, n, required to obtain the upper bound q0,13 with
confidence level C0,13 is calculated using:

1. Classical statistical testing, where no prior information about the simultaneous failure probability
q13 is included.

2. Bayesian hypothesis testing, where only the restrictions imposed on q13 by the marginal failure
probabilities q1 and q3 and the assumption that the states of the software components are
associated random variables are taken into account.

3. Bayesian hypothesis testing, where additional prior information about the simultaneous failure
probability q13 is taken into account.

The number of fault free tests, n, required to obtain the upper bound q0,13 at the given predefined
confidence level C0,13 = 0.99, using classical statistical testing, is given in Equation 3 [42].

n =
ln(1−C0,13)

ln(1−q0,13)
= 46557 (3)

This means that if no prior information in included, 46557 fault free tests need to be carried out to
obtain the upper bound q0,13 with confidence level C0,13 = 0.99.

If we only take into account the restrictions imposed on q13 by the marginal failure probabilities q1 and
q3 and the assumption that the states of the software components are associated random variables, the
number of fault free tests required to obtain an adequate upper bound for q13, at the given predefined
confidence level C0,13 = 0.99, can be found by solving Equation 4 [33].

∫ q0,13
a13

(1−q13)
ndq13∫ b13

q0,13
(1−q13)ndq13

≥ C0,13

(1−C0,13)
(4)

In this equation, q13 is uniformally distributed (beta distributed with parameters α = β = 1) over
the interval [a13,b13]. Taking only these restrictions into account, 51793 fault free tests need to be
carried out to obtain the simultaneous failure probability q0,13 at confidence level C0,13. This means
that the number of fault free tests in fact increases when only the restrictions from the marginal failure
probabilities are taken into account.

One way to include additional information about the simultaneous failure probability q13, in addition
to the restrictions from the marginal probabilities q1 and q3, is to identify values for α and β in the
beta distribution by visualizing a controlled experiment. In this experiment, n can be considered as the
total number of tests and α as the number of simultaneous failures of components 1 and 3. Assuming
this prior information, the number of fault free tests required to obtain an adequate upper bound for the
simultaneous failure probability q13, at the given predefined confidence level C0,13 = 0.99 for different
choices of α and β , can be found by solving Equation 5 [33].

∫ q0,13
a13

(q13−a13)
α−1(b13−q13)

β−1(1−q13)
ndq13∫ b13

q0,13
(q13−a13)α−1(b13−q13)β−1(1−q13)ndq13

≥

C0,13

(1−C0,13)
(5)

In Figures 2(a) and 2(b), the number of tests required are illustrated graphically for different choices of
α and β in the beta distribution. From these figures, it is clear that the number of fault free tests, n,
is highly sensitive to the choices of α and β . For example n = 951 fault free tests are required when
α = 1 and β = 66.

In addition to the individual software components’ failure probabilities q1 and q3, information regarding
components’ architecture, complexity, programming languages, development processes, etc. might as
well be available. This information is also relevant for assessing q13, and will be explored further in
future work.

5. SUMMARY, CONCLUSIONS AND FURTHER WORK

In this paper, we have presented a component-based approach for assessing reliability of compound
software. This approach applies binary reliability theory to explicitly handle failure dependencies
between software components. The approach has been elaborated through several experimental
studies [31–33, 40]. To illustrate the approach, we have used a backtracking system typically used
for helping people to find their way home if they get lost. This system consists of a recovery block
containing two independently developed software components capable of establishing and recording
the geographical position of a mobile device.

●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

60
00

0

β

N
um

be
r

of
 te

st
s

(a) When α = 1 and β varies from 1 to 100.

 0 5 10 15 20

 0
10

0
20

0
30

0
40

0
50

0

 0

10

20

30

40

50

60

70

alpha

be
ta

N
um

be
r

of
 te

st
s

(t
ho

us
an

ds
)

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

(b) When α varies from 1 to 20 and β varies from 1 to 70.

Figure 2: Number of fault free test required to obtain an adequate upper bound for the simultaneous
failure probability q13, at the given predefined confidence level C0,13 = 0.99.

Using this system, we first illustrate how the components’ simultaneous reliabilities and failure
probabilities are imposed by a) the components’ marginal reliabilities and failure probabilities and b)
the assumption that the states of the software components are associated random variables. Secondly,
we show how the general rules for selecting the most important component dependencies can be applied
on a system consisting of four components. Finally, we calculate the number of fault free tests required
to obtain the upper bound for a simultaneous failure probability with a given confidence level. The
results show that the number of required tests to obtain an upper bound is highly sensitive to the choices
of α and β in the beta distribution. It is noteworthy that the number of tests can both increase and
decrease compared to classical statistical testing depending on the choice of these parameters.

Further work includes investigating the main challenges of our component-based approach when we go
from binary systems of binary components to multistate systems of binary or multistate components.
Especially, we will look at the effect of using only partial dependency information when assessing
reliability of multistate systems of binary and multistate components. To find the most important
component dependencies in each system state, direct calculation, the Birnbaum measure [38] and
Principal Component Analysis [43] will be investigated. A critical question is if these techniques
identify the same component dependencies as the most important ones in all system states, or if the
most important component dependencies vary between different system states.

References

[1] M. R. Lyu, ed., Handbook of Software Reliability Engineering. IEEE Computer Society Press, 1995.

[2] V. Cortellessa and V. Grassi, “A modeling approach to analyze the impact of error propagation on reliability
of component-based systems,” Proceedings of the 10th International Conference on Component-based
Software Engineering, pp. 140–156, 2007.

[3] S. S. Gokhale, “Architecture-based software reliability analysis: Overview and limitations,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 4, no. 1, pp. 32–40, 2007.

[4] S. S. Gokhale and K. S. Trivedi, “Dependency Characterization in Path-Based Approaches to Architecture-
Based Software Reliability Prediction,” IEEE Workshop on Application-Specific Software Engineering and

Technology, pp. 86–90, 1998.

[5] M. Palviainen, A. Evesti, and E. Ovaska, “The reliability estimation, prediction and measuring of
component-based software,” Journal of Systems and Software, vol. 84, no. 6, pp. 1054–1070, 2011.

[6] K. Goseva-Popstojanova and K. S. Trivedi, “Architecture-based approach to reliability assessment of
software systems,” Performance Evaluation, vol. 45, no. 2-3, pp. 179–204, 2001.

[7] D. Hamlet, “Software component composition: a subdomain-based testing-theory foundation,” Software
Testing, Verification and Reliability, vol. 17, no. 4, pp. 243–269, 2007.

[8] D. Hamlet, D. Mason, and D. Woit, “Theory of Software Reliability Based on Components,” International
Conference on Software Engineering, vol. 23, pp. 361–370, 2001.

[9] S. Krishnamurthy and A. Mathur, “On the Estimation of Reliability of a Software System Using Reliabilities
of its Components,” Proceedings of the 8th International Symposium on Software Reliability Engineering
(ISSRE’97), pp. 146–155, 1997.

[10] I. Krka, G. Edwards, L. Cheung, L. Golubchik, and N. Medvidovic, “A comprehensive exploration of
challenges in Architecture-Based reliability estimation,” Architecting Dependable Systems VI, pp. 202–227,
2009.

[11] S. Kuball, J. May, and G. Hughes, “Building a system failure rate estimator by identifying component failure
rates,” Proceedings of the 10th International Symposium on Software Reliability Engineering (ISSRE’99),
pp. 32–41, 1999.

[12] P. Popic, D. Desovski, W. Abdelmoez, and B. Cukic, “Error Propagation in the Reliability Analysis of
Component based Systems,” Proceedings of the 16th IEEE International Symposium on Software Reliability
(ISSRE’05), pp. 53–62, 2005.

[13] R. H. Reussner, H. W. Schmidt, and I. H. Poernomo, “Reliability prediction for component-based software
architectures,” Journal of Systems and Software, vol. 66, no. 3, pp. 241–252, 2003.

[14] H. Singh, V. Cortellessa, B. Cukic, E. Gunel, and V. Bharadwaj, “A Bayesian approach to reliability
prediction and assessment of component based systems,” Proceedings of the 12th IEEE International
Symposium on Software Reliability Engineering (ISSRE’01), pp. 12–19, 2001.

[15] P. T. Trung and H. Q. Thang, “Building the reliability prediction model of component-based software
architectures,” Int’l Journal of Information Technology, vol. 5, no. 1, pp. 18–25, 2009.

[16] M. Vieira and D. Richardson, “The role of dependencies in component-based systems evolution,” Proceed-
ings of the International Workshop on Principles of Software Evolution, pp. 62–65, 2002.

[17] S. Yacoub, B. Cukic, and H. Ammar, “A Scenario-Based Reliability Analysis Approach for Component-
based Software,” IEEE Transactions on Reliability, vol. 53, no. 4, pp. 465–480, 2004.

[18] D. E. Eckhardt and L. D. Lee, “A theoretical basis for the analysis of redundant software subject to
coincident errors,” tech. rep., Memo 86369, NASA, 1985.

[19] J. C. Knight and N. G. Leveson, “An experimental evaluation of the assumption of independence in
multiversion programming,” IEEE Transactions on Software Engineering, vol. 12(1), pp. 96–109, 1986.

[20] B. Littlewood and D. R. Miller, “Conceptual Modeling of Coincident Failures in Multiversion Software,”
IEEE Transactions on Software Engineering, vol. 15(12), pp. 1596–1614, 1989.

[21] Y. Dai, M. Xie, K. Poh, and S. Ng, “A model for correlated failures in N-version programming,” IIE
Transactions, vol. 36, no. 12, pp. 1183–1192, 2004.

[22] P. Guo, X. Liu, and Q. Yin, “Methodology for Reliability Evaluation of N-Version Programming Software
Fault Tolerance System,” International Conference on Computer Science and Software Engineering,
pp. 654–657, 2008.

[23] B. Littlewood, P. Popov, and L. Strigini, “Modelling software design diversity: a review,” ACM Computing
Surveys, vol. 33, no. 2, pp. 177–208, 2001.

[24] V. F. Nicola and A. Goyal, “Modeling of correlated failures and community error recovery in multiversion
software,” IEEE Transactions on Software Engineering, vol. 16, no. 3, pp. 350–359, 1990.

[25] P. Popov, L. Strigini, J. May, and S. Kuball, “Estimating Bounds on the Reliability of Diverse Systems,”
IEEE Transactions on Software Engineering, vol. 29, no. 4, pp. 345–359, 2003.

[26] L. A. Tomek, J. K. Muppala, and K. S. Trivedi, “Modeling Correlation in Software Recovery Blocks,” IEEE
Transactions on Software Engineering, vol. 19, no. 11, pp. 1071–1086, 1993.

[27] M. Kristiansen, A component-based approach for assessing reliability of compound software. PhD thesis,
Faculty of Matematics and Natural Sciences, University of Oslo, 2011.

[28] J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer Verlag, second ed., 1985.

[29] B. Cukic, E. Gunel, H. Singh, and L. Guo, “The Theory of Software Reliability Corroboration,” IEICE
Transactions on Information and Systems, vol. E86-D, no. 10, pp. 2121–2129, 2003.

[30] C. Smidts, B. Cukic, E. Gunel, M. Li, and H. Singh, “Software Reliability Corroboration,” Proceedings of
the 27’th Annual NASA Goddard Software Engineering Workshop (SEW-27’02), pp. 82–87, 2002.

[31] M. Kristiansen, “Finding Upper Bounds for Software Failure Probabilities - Experiments and Results,”
Computer Safety, Reliability and Security (Safecomp 2005), pp. 179–193, 2005.

[32] M. Kristiansen, R. Winther, and B. Natvig, “On Component Dependencies in Compound Software,”
International Journal of Reliability, Quality and Safety Engineering (IJRQSE), vol. 17, no. 5, pp. 465–493,
2010.

[33] M. Kristiansen, R. Winther, and B. Natvig, “A Bayesian Hypothesis Testing Approach for Finding Upper
Bounds for Probabilities that Pairs of Software Components Fail Simultaneously,” International Journal of
Reliability, Quality and Safety Engineering (IJRQSE), vol. 18, no. 3, pp. 209–236, 2011.

[34] M. Kristiansen, R. Winther, and J. E. Simensen, “Identifying the Most Important Component Dependencies
in Compound Software,” Risk, Reliability and Safety (ESREL 2009), pp. 1333–1340, 2009.

[35] R. E. Barlow and F. Proschan, Statistical theory of reliability and life testing: probability models. Holt,
Rinehart and Winston, 1975.

[36] B. Littlewood and L. Strigini, “Guidelines for the statistical testing of software,” tech. rep., City University,
London, 1998.

[37] J. D. Musa, Software Reliability Engineering. McGraw-Hill, 1998.

[38] B. Natvig, Multistate Systems Reliability Theory with Applications. John Wiley and Sons, Ltd, first ed.,
2011.

[39] B. Natvig, Reliability analysis with technological applications (in Norwegian). Department of Mathematics,
University of Oslo, 1998.

[40] M. Kristiansen, R. Winther, and B. Natvig, “On Component Dependencies in Compound Software,” tech.
rep., Department of Mathematics, University of Oslo, 2010.

[41] B. Randell and J. Xu, “The evolution of the recovery block concept,” 1995.

[42] J. H. Poore, H. D. Mills, and D. Mutchler, “Planning and Certifying Software System reliability,” IEEE
software, 1993.

[43] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. Prentice Hall, New York,
1998.

