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Abstract: This paper deals with the concept of Maintenance Free Operating Period (MFOP). This 

MFOP is defined as a period of operation during which the system should be able with a given level of 

confidence to carry out all its assigned missions without system fault or performance limitation. Based 

on this concept, a dynamic maintenance policy for a multi-component system is implemented. The 

main objective of this paper is to propose a method to integrate the usage information of the system 

components in order to optimize the implemented policy. The method is evaluated considering the 

Total Maintenance Cost (TMC) value. 
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1. INTRODUCTION 

 
Nowadays even if the vehicle configuration is important for any customer, the development of an 

efficient maintenance management system appears as another key of success. Aware of this 

opportunity, the commercial heavy vehicle industry propose, to its customers, service contracts in 

order to manage the vehicle maintenance. 

 

These contracts are built from information on the vehicle configuration and on the estimation of 

vehicle operating conditions provided by the customer. Based on this information, a maintenance 

planning is created to inform the customer on the planned service operations during the maintenance 

contract period. 

 

Currently the maintenance planning is static. It means that the maintenance intervals defined at the 

vehicle purchase date aren’t updated during all the vehicle life. Moreover this planning is based on a 

component perspective in which the interactions at the system level are not taken into account. As a 

consequence, the total maintenance cost is impacted by unplanned maintenances generating high 

immobilization costs. 

 

In this framework, a dynamic maintenance policy for a multi-component system integrating the 

possibilities offered by new information and communication technology solutions can be investigated. 

To increase the operational reliability of the system and decrease downtime and maintenance costs, a 

reliability based maintenance policy can be used. Note that most of the time, the optimization of these 

policies aims to define the best moments to perform maintenance tasks or inspections in order to find 

the best balance between preventive and corrective maintenance. The problem and the constraints are 

different in the heavy vehicle industry. Indeed the maintenance can be performed in a preventive way 
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exclusively when the vehicle returns in the workshop. Out of these occasions, in period of operations, 

the maintenance is almost impossible or generates high immobilization costs. To overcome this 

problem, the developed maintenance policy should be able to ensure failure free operation on given 

period with a high confidence level and select maintenance operations to be performed during stops at 

the workshop. 

 

Aware of this issue, the Royal Air Force proposed in 1996 the concept of the Maintenance Free 

Operating Period (MFOP) [1,2] with the objective to obtain better operational planning capability, 

improved operational availability and reduce running costs. 

 

The main contribution of this paper is to propose a dynamic maintenance policy for a multi-

component system. This policy, based on MFOP concept, integrates the usage information of the 

system components to optimize the total maintenance costs. 

 

The remainder of the article is organized as follows. Section 2 defines the MFOP concept and the 

implemented maintenance policy. Section 3 illustrates the impact of usage information on the 

maintenance decision. Section 4 develops the use of mixture models to support the usage-informed 

maintenance policy. Section 5 deals with the total maintenance cost definition and the maintenance 

strategy optimization. The last section illustrates the method on a numerical example. 
 

2. MAINTENANCE POLICY BASED ON MFOP CONCEPT 

 
2.1.  MFOP Concept Definition 

 
The MFOP is defined as a period of operation during which the equipment must be able to carry out 

all its assigned missions without any maintenance action and without the operator being restricted in 

any way due to system faults or limitations [3]. The MFOP measure assumes that success is attainable 

and that failures can be accurately forecast [4]. 

 

According to its definition, the main objective is to avoid unplanned maintenance operations in 

moving all upcoming corrective maintenances to a schedule period of time of preventive maintenance. 

Based on this objective, the concept appears as a method to group maintenance operations at the end 

of MFOP (or cycle of MFOP) during stop at the workshop. 

 

In [5], Tinga and al. argue that in this form of grouping, called time-driven clustering, the moment of 

maintenance is not driven by the failure of one of the components but must be planned carefully. 

Thereby, contrary to other forms like block replacement policy or opportunity-based maintenance, this 

clustering method could be very interesting for systems with high immobilization costs and where the 

number of maintenance opportunities is quite limited such as transport systems. 

 

To ensure this MFOP, maintenance policies based on this concept have been introduced [6]. 

Nevertheless these policies are developed for single component system and do not integrate the 

possibility to take into account the available information on component usage in the maintenance 

decision process. 

 

2.2.  Dynamic Maintenance Policy 

 

The dynamic maintenance policy implemented (see Fig. 1) consists in estimating at each end of 

MFOP or when a failure occurs, the probability that the multi-component system survives for the 

duration of MFOP given the available information [7]. 

 

If the reliability requirement is a MFOP of       life units for the     cycle of MFOP, this probability 

called Maintenance Free Operating Period Survivability (     ) is given by: 
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where      (     ) is the system reliability after       life units. 

 

Thereby if the       at the end of a MFOP is higher than a specified confidence level, no 

maintenance operation is necessary and the system can be deployed for the next period. In the opposite 

case, where the       is lower than a specified confidence level, maintenance occasion is needed to 

reach again the confidence level. Consequently, the       allows to define if a maintenance 

occasion is needed or not. 

 

Figure 1: Maintenance Policy Based on MFOP Concept 

 
 

When a maintenance occasion is needed, a maintenance decision rule to select the maintenance 

operations to be performed during this occasion should be defined. In this paper a maintenance 

decision rule based on the cost minimization on the MFOP horizon is introduced [8]. In this case the 

problem can be mathematically formulated as follows: 

   
{  }

∑     

 

   

  

 

             

(2) 

 

where   is the number of system components,    is the operation cost including labor and spare part 

cost of component  ,    is a binary variable which indicates the selection of a maintenance operation 

on the component   and    is the specified confidence level. Further the following assumptions are 

made to solve this optimization problem. Assumption 1: After each maintenance operation where one 

or several components are replaced, their reliability performances are considered “as good as new”. 

Assumption 2: The reliability performance of the other components is considered unchanged or “as 

bad as old”. 

 

The interesting feature of the       is its update with the reliability of the components at the end of 

each period. Based on this feature, the uncertainty of the       strongly depends on the available 

monitoring information. In a previous paper [8], the impact of different information levels on the 

components state has been illustrated. The impact of usage information will be investigated in the next 

section. 
 

3. IMPACT OF USAGE INFORMATION ON THE MAINTENANCE DECISION 

 
3.1.   Lifetime Models and Usage Information 

 

According to the operating condition in which a component is used, its degradation mechanism will be 

different, more or less variable. Note that disregarding this usage information, especially for systems 
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which operate in variable conditions, generates a large uncertainty in the lifetime models and an 

efficiency decrease of the maintenance policy [9]. 

 

Figure 2: Usage Uncertainty and the Consequences on the Lifetime Models 

 
 

The lifetime models are obtained from Volvo databases where maintenance and repair events have 

been recorded on a per-vehicle basis. These models are built per component for a given vehicle range 

and purchase year. In these models a significant statistical variance appears that makes them 

economically inefficient and unprofitable on larger scales. 

 

The recorded failures come from components used in variable usage conditions. Currently in the 

databases, no direct link is available to correlate the usage information and the failure date. In this 

framework, considering a unique lifetime model for the component datasets could be inappropriate 

and can explain the significant variance. To avoid this kind of problems, Tinga [9] mentions that 

removing the uncertainty in usage reduces the width of distributions and increases the reliability 

models accuracy (see Fig. 2). The proposed method to define the various lifetime models correlated 

with the component usage will be presented in the next section. 

 

3.2.   Information Levels Definition 

 

In order to demonstrate the impact of the usage information on the maintenance policy, three 

information levels are considered per component (see Tab. 1). For the first information level, no usage 

information is available. For the components under this information level, a unimodal lifetime model 

will be considered. 

 

Table 1: Information Levels Definition 

 

For the second information level, it is assumed that different lifetime models are defined per 

component according to the operating conditions and that the usage information is known in a 
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Information Level Usage Information Component Lifetime Models 

Level 1 No available information Unimodal lifetime model 

Level 2 Past usage information 
Lifetime model selected according to 

the usage information 

Level 3 
Past usage information +  Future 

usage estimation on the next MFOP 

Lifetime model selected according to 

the usage information 
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continuous way. Thereby the selection of component lifetime model may be updated at the end of each 

MFOP cycle thanks to the exact knowledge on the past operating conditions. 

 

For the last level, the previous assumptions made for the second level are considered and additionally 

it is assumed that the predicted usage information for the next MFOP is available. This prevision of 

future operating conditions can be obtained thanks to close relationship with customers. The 

component lifetime model can be updated at the end of each MFOP cycle according to the knowledge 

on the past operating conditions and on the next MFOP. 

 

4. MIXTURE MODELS TO CONNECT USAGES AND COMPONENT LIFETIMES  

 
As mentioned previously, the main objective is to implement a usage-informed maintenance policy 

which selects, at the end of each MFOP cycle, the component lifetime models according to the usage 

information and uses it in the maintenance decision rule. To achieve this objective, it is necessary to 

be able to connect the usage profiles and the component life consumption [5]. 

 

In this section, an experience-based method is proposed in order to define this connection. Note that 

the component failure behavior is based on failure data collected in the past. Under the assumption 

that the operating conditions affect the component reliability, a mixture models identification can be 

applied on these failure data to identify the lifetime models conditional to the different usages. 

 

4.1.   Mixture Model Definition 

 

Considering a mixture of lifetime distributions consists of assuming that failure data come from 

several sub-populations. Each sub-population can be modeled, in a separate manner, by a unique 

lifetime distribution. The total dataset is thus a mixture of these sub-populations. Each sub-population 

is assumed to represent a type of usage for the specified component. 

 

Zaman and al. [10] explained that a mixture model of distributions is a weighted average of 

probability distributions with positive weights that sum to one. The density function of mixture 

distribution is given by: 

 ( )   ∑    ( )

 

   

 (3) 

 

where   represents the assumed number of sub-population in the mixture under study,    is the 

proportion of the  th sub-population in the mixture and   ( )  the density function of the  th sub-

population. 

 

4.2.   Parameter Estimation 

 

According to Razali and al. [11], a number of methods for estimating the parameters for mixture 

distribution represented by Eq. 3 including Maximum likelihood (MLE), moment method, Bayesian 

method and least square method can be investigated. Currently, MLE became more popular for 

parameter estimation in mixture model. Therefore in this paper, the MLE method will be considered.  

 
The MLE parameter estimators can be obtained by finding the log likelihood function of Eq. 3 as 

follows: 

    ∑   (∑    (  )

 

   

)  

 

   

 (4) 

 
where   represents the number of data observed in the total population. The maximum of Eq. 4 can be 

obtained by taking the first derivative of     with respect to all parameters and set it to be zero [12]. 
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To solve this mathematical problem, the most popular method is the Expectation-Maximization 

algorithm (EM algorithm). In practice, this method needs a parameters initialization to start the 

iterative process. In this paper, the K-means method will be considered to increase the EM-algorithm 

efficiency [13]. This method aims to divide the initial population into K clusters in which each 

observation belongs to the cluster with the nearest mean. 

 
The following process allows the parameters estimation for mixture distribution assuming a given 

number of sub-populations. Nevertheless, this sub-populations number is most of the time unknown. 

Only expert statements can be used to define the maximum possible number of sub-populations.  

Thereby a criterion based on the coefficient of determination    will be used to determine the best 

number of sub-populations for a specified mixture distribution.    is given by: 

      
∑ (    ̂ )

  
   

∑ (    ̅)
  

   

 (5) 

 

where   represents the number of data observed in the total population,    are the values of relative 

frequencies of observed data,  ̂  are the forecast values using the mixture distribution function and  ̅ is 

the mean of relative frequencies of observed data. Usually the coefficient of determination   , which 

is a measure of goodness fit, increases with the number of sub-populations. In order to avoid selecting 

always the maximum number of sub-population, a threshold equals to 0.99 is introduced on the    

value from which the number of sub-populations is validated. 

 

4.3.   Allocation Method 
 

According to the methods presented in the two previous sub-sections, the number of sub-populations 

and the lifetime models for each sub-population can be determined from the initial mixed dataset. 

Then from these results, an allocation method should be implemented in order to classify the initial 

failure time values in each sub-population. 

 

The natural idea is to allocate the failure data in the sub-population from which it is most likely to be 

seen from the observed value and characteristics of sub-populations. The probability that the observed 

failure   belongs to the sub-population   given the value of    is given by: 

    
    (  )

∑     (  )
 
   

 (6) 

 
Based on this probability, a maximum a posteriori classification method can be used. This allocation 

method imposes to compute for each observed failure   the probabilities     relative to each sub-

population and to allocate the failure in the sub-population with the maximum probability    . 

 

As mentioned previously, no direct link is available in the current databases to correlate the usage 

information and the failure date. In this framework, this allocation method is able to cluster the initial 

failures in various sub-populations facilitating the highlighting of covariates explaining the emergence 

of these sub-populations. These covariates could be determined thanks to vehicle signals analysis for 

the different sub-populations. Thereby with the monitoring of these covariates, the current operating 

conditions can be correlated with the identified sub-populations and the lifetime model can be 

updated. Note that in this paper the covariates will be assumed to be known. 

 

5. MAINTENANCE STRATEGY OPTIMIZATON BASED ON TOTAL MAINTENANCE 

COST 

 
In order to evaluate the alternative maintenance strategies and to optimize the usage-informed 

maintenance policy based on MFOP concept, the Total Maintenance Cost (   ) could be evaluated 

over five years which represents the nominal contract duration. 
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The     is expressed as: 

                       (7) 

 

where       is the replacement cost,      is the corrective cost and       is the diagnosis cost. The 

      can be defined as: 

        ∑   (        

 

   

       )              (8) 

 

where   is the number of system components,    is the operation cost including labor and spare part 

cost of component  ,         is the number of replacements of component   during a system preventive 

stop,        is the number of replacements of component   during a system corrective stop,        is 

the setup cost and     is the total number of maintenance stops. 

 

Then the      is given by: 

       ∑   

 

   

              ((           )                 )  (               ) (9) 

 

where    is the replacement duration of component   in hour,       is the hourly rate for a system  

immobilization,        is the setup activities duration,       is the tow duration,           is the 

number of system failures and      is the tow cost. Thereby a failure at the system level is considered 

to impact the customer by the tow cost but also by the total stop duration which leads to a loss of 

production. 

 

Finally the       is expressed as: 

        (                  )  (                         ) (10) 

 

where        is the unitary diagnosis cost and        is the unitary diagnosis duration. Indeed when 

the system failed, a diagnosis for each system components is considered as mandatory to repair the 

system.  

 

By Monte Carlo simulation, various maintenance strategies can be examined. The optimal solution is 

the strategy corresponding to the lowest value of     . 
 

6. NUMERICAL EXAMPLE 

 
6.1.   Initial Database Implementation and Mixture Models Application 

 

In the real databases of the company, no direct link is currently available to correlate the usage 

information and the failure date. To overcome this problem, a simulated database is built to be able to 

highlight the covariates effects responsible of the possible sub-populations. 

 

In this sub-section, the aim is to define a method to build an initial failure database per component. 

The mixture models method will then be applied on these failure databases in order to connect lifetime 

models and assumed usages. Note that the way to build the initial failure databases is totally 

independent of the mixture models method. 

 

Consider a deteriorating component subject to a failure mechanism due to an excessive deterioration 

level  . A Gamma process is considered to describe its evolution. Assume that the component operates 

in variable conditions and consider that the operating environment influences the speed and the 

variance of the degradation process [14]. 
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In order to build the failure database relative to each component, assume that the component operates 

under a two-stages environment: “normal” and “stressed”, and the deterioration follows a 

homogeneous Gamma process for each of the environment states (see Fig. 3). Let (       ) and 

(       ) denote the couples of parameters respectively for the “normal” and “stressed” environments 

[15]. Note that these couples of parameters will be different for each considered component. 

 

Figure 3: Degradation Process in a Dynamic Environment

 
 

Consider the component life as a succession of running period during which its environment evolves 

between the “normal” and “stressed” state. A Normal distribution  (          ) will be defined to 

simulate each running period length in kilometer. A probability of being in a “stressed” state between 

0% and 60%, considered as the minimum and the maximum threshold, is affected at each component 

history. This probability will be used at each running period to define the environment state. 

 

Figure 4: Histogram of Initial Failures Database  

 
 

Based on this process, 10000 histories are simulated for each system component and for each history 

the failure date in kilometer and the kilometer ratio in the “stressed” environment are computed. Note 

that the kilometer ratio in the “stressed” environment is defined as the covariate. Further the Gamma 

processes used to build the initial failure database per component will be thereafter assumed unknown. 
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To illustrate the mixture models application assume that a component follows a Gamma process 

  (         ) in a “normal” environment and   (           ) in a “stressed” environment and 

that the degradation threshold is fixed at     . The histogram given in Fig. 4 represents the obtained 

failure database for a component according to the implemented methodology. 

 

Figure 5: Weibull Lifetime Models for     and     Sub-Populations 

 
 
The main objective consists then to determine if the initial failure database comes from one or several 

sub-populations. The first step is to consider only the case with     sub-population. A Weibull 

distribution is used to model the component lifetime. Note that the Weibull distribution is the most 

widely used distribution for modeling failure datasets. For this first step, the Weibull lifetime model 

 (         ) is obtained and the measure of goodness gives     
       . In general this value is 

sufficient to validate the unique model nevertheless the variance obtained in this case is very width 

(see Fig. 5) and the use of mixture models seems to be appropriate. 

 

Figure 6: Initial Failure Allocation and Limit Definition on the Covariate  

 
 
The second step is to consider the case with     sub-populations. In applying the defined process, 

the Weibull lifetime models  (          )  and  (         )  are obtained and the measure of 

goodness of fit gives     
       . According to the rule previously mentioned,      

       thus 

the case with     sub-populations is validated. 
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Once the parameters and the number of sub-populations are defined for the mixture model, the next 

step is to allocate the initial failure data in each sub-population thanks to the maximum a posteriori 

classification method. Assume that the first sub-population represents the model  (          ) and 

that the second sub-population represents the model  (         ). 
 

In the Fig. 6, each classified failure is associated with the kilometer ratio in the “stressed” 

environment. This measure defined as the covariate is assumed to be able to explain the emergence of 

these two sub-populations. To select, at the end of each MFOP cycle, the lifetime model according to 

its operating conditions, a limit to distinguish the two sub-populations is fixed on this covariate. To 

determine this limit, the aim is to minimize the allocation errors on the total population. Based on this 

requirement, the limit of 30% is fixed. Thereby at the end of each MFOP cycle, if the kilometer ratio 

in the “stressed” environment is inferior at 30% for the specified component, the lifetime model 

 (         ) is selected and in the other case  (          ). 
 
6.2.   System Definition 

 

Figure 7: System Structure Definition 

 

 

 

 

 

 

 

In order to illustrate the usage-informed preventive maintenance policy based on MFOP concept, the 

following multi-component system is defined (see Fig. 7). 

 

For this system, the hourly rate for a system immobilization is fixed at           , the unitary 

diagnosis cost and duration are respectively fixed at            and            , the tow cost 

and duration are respectively fixed at             and         and finally the setup cost and 

duration are respectively fixed at             and             . 

 

Table 2: System Parameters 

 

Tab. 2 describes the Gamma processes used to build the initial failure database per component, the 

lifetime models obtained for     and     sub-populations as well as the defined limit on the 

covariate and the specific maintenance cost and duration per component. Note that for each system 

component, the mixture model for     sub-populations has been validated. 
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6.3.   Cost-Optimized Maintenance Policy Based on MFOP and Usage Information 

 

A maintenance model is developed in order to calculate the     index over five years based on 

Monte Carlo simulation. Assume that, first at the end of each MFOP cycle, only the information at the 

system level is available and the components state inside the system is unknown. No implementation 

cost, including for example sensors costs or technology solutions costs, are considered. 

 

In order to demonstrate the impact of the usage information on the    , the computation of     is 

realized for the same MFOP and confidence level values in integrating the first, the second and the 

third information level on usage for each system component. 

 

Firstly, the Fig. 8 represents the     index for different MFOP between 20000 km and 60000 km by 

step of 10000 km and confidence levels between 75% and 95% by step of 5% when no usage 

information is available for each system component. In this case, the     is minimal when MFOP 

and the confidence level are respectively equal to 60 000 km and 90%. This cost-optimized solution 

provides the best balance between corrective and preventive maintenance operations. 

 

Note that for some configurations, the     increases with the confidence level. This behavior is 

explained by the fact that the additional preventive maintenance cost can be higher than the gain saved 

by the immobilization costs reduction. 

 

Figure 8: The TMC (Euro) with Information Level 1 on Usage 

 
 

Secondly a comparison between the three information levels is performed in Tab. 3. These results 

justify the positive impact created by the increase of information level on usage. If the second 

information level is implemented for each system component, the saved cost in considering each     

value is in average of 15.6% comparatively with the first level. For the third information level the 

saved cost is in average of 16.2% comparatively with the first level. 

 

Table 3: TMC with the Three Information Levels on Usage 

0
2

4
6 x 10

4

0.75 0.8 0.85 0.9 0.95 1

6000

7000

8000

9000

10000

11000

MFOP (Km)
Confidence Level

T
M

C
 (

E
u

ro
)

Information 

Level 

Optimal 

TMC (Euro) 

Saved costs on the optimal TMC 

comparatively with Level 1 (%) 

Mean Saved Costs comparatively 

with Level 1 (%) 

Level 1 6387€ - - 

Level 2 5808€ 9.1% 15.6% 

Level 3 5724€ 10.4% 16.2% 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

Note that the cost-optimized solution decreases of 9.1% with the second information level and of 

10.4% with the third information level. Thereby this example illustrates how the usage information 

can be used to optimize the dynamic maintenance policy based on MFOP concept. 

 

7. CONCLUSION 

 

In this article, a usage-informed preventive maintenance policy based on MFOP concept has been 

proposed. This dynamic maintenance policy is able to take into account, at the end of each MFOP, the 

usage information of each system component to update the maintenance decision process. The 

connection between the usage information and the component life consumption is performed thanks to 

an experience-based method named mixture models. The alternative maintenance strategies in 

considering various information levels on usage are evaluated based on     value. The results 

presented on a specified system allow illustrating the positive impact of usage information to define 

the cost-optimized maintenance strategy. 
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