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Abstract: Traditional Probabilistic Risk Assessments (PRAs) model dependency through deterministic 
relationships in fault trees and event trees, or through empirical ratio common cause failure (CCF) 
models. However, popular CCF models do not recognized system specific defenses against 
dependencies and are restricted to identical components in redundant configuration. While this has 
allowed prediction of system reliability with little or no data, it is a limiting factor in many applications, 
such as modeling the characteristics of a system design or incorporating the characteristics of failure 
when assessing the failure’s risk significance or degraded performance events (known as an event 
assessment). 
 
This paper proposes the General Dependency Model (GDM), which uses Bayesian Network to model 
the probabilistic dependencies between components. This is done through the introduction of three 
parameters for each failure cause which relate to physical attributes of the system being modelled, 
component fragility, cause condition probability, and coupling factor strength. 
 
Finally this paper demonstrates the development and use of the GDM for new system PSA applications 
and event assessments of existing system. Examples of the quantification of the GDM model in the 
presence of uncertain evidence are provided. 
 
Keywords:  Common Cause Failure, Bayesian Network, General Dependency Model, Dependency 
Modelling. 
 
1. INTRODUCTION 
 
Probabilistic system modeling aims to understand system vulnerabilities, compare alternative designs 
and estimate exposure to risk in steady state and scenario based conditions. Traditionally system models 
only included discrete dependencies between components, however, greater knowledge of how systems 
interact and respond to events has enabled explicit treatment of ‘soft’ dependencies within systems such 
as a common manufacturer or technician through Common Cause Failure models. Without proper 
treatment of these dependencies, the system safety estimate can be severely underestimated and the 
system vulnerabilities within specific systems are not well understood. 
 
An example of soft dependencies causing unexpected system failure is Eastern Air Lines Flight 855, 
where the failure of all three engines was caused by a loss of oil from missing O-ring seals from each 
engine. The NTSB identified the probable cause as “failure of mechanics to follow the established and 
proper procedures for the installation of master chip detectors in the engine lubrication system, the 
repeated failure of supervisory personnel … and the failure of Eastern Air Lines management…” [1] 
The failure of each engine cannot be treated as independent as they share maintenance crews, supervisors 
and management system. 
 
Common Cause Failure (CCF) models either apply a qualitative or quantitative approach. Qualitative 
models involve a qualitative assessment of the soft dependencies between components and apply generic 
factors to adjust the Probability Safety Assessment (PSA) results. This provides the ability to better 
understand the vulnerabilities of the system and implement defenses to protect against CCFs. These 
estimators used in the PSA are usually subjective and not based on collected data. Quantitative models 
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use data from previously observed events to quantitatively assess the impact on the probability of system 
failure. These methods typically use impact vectors as described in NUREG/CR-5497 [2] which apply 
assumptions of symmetry between components and cannot quantify the effect of system specific 
defenses against CCF.  Despite previous attempts, it has been difficult to combine the cause information 
from qualitative assessments with data used on quantitative methods. [3,4] Further, while these models 
allow for the quantification of soft dependencies at a system level, they are inadequate for providing 
further insight into the causes of CCF, which is necessary to inform mitigation strategy development.  
 
The limitations of the current CCF models is particularly apparent when assessing a particular failure’s 
risk significance within the system.  Without being able to incorporate the specific failure cause and 
propensity for propagation through the system given that system’s defenses, the assessment is limited 
in its insights of the system’s response. It has become evident that the commonly accepted CCF 
modeling methodology [2] and corresponding tools need enhancements to meet these PSA activities. 
 
This paper proposes the General Dependency Model (GDM), which uses a Bayesian Network to model 
the probabilistic dependencies between components. GDM allows the explicit modelling of system 
specific dependencies and defenses and can be implemented across non-identical components. The 
model  
 
2. DESCRIBING COMMON CAUSE FAILURES 
 
CCF requires two factors; a failure cause and a coupling factor[2]. Failure cause is the condition that the 
component failure can be attributed to, the coupling factor is the dependency between components which 
propagates the failure to multiple components. A Common Cause Component Group (CCCG) is a group 
of components which share coupling factors, making them susceptible to a common failure cause while 
defenses are the parts of a system that protect against the failure cause or the coupling factor.  
 
CCFs are only a problem when failures occur within a timeframe that multiple components cannot 
provide their function. This is sometimes called ‘simultaneous failure.’ It should be noted that the term 
‘simultaneous’ is relative and may be defined using a mission period or a replacement/repair period. 
 
3. CURRENT CCF ANALYSIS METHODOLOGY AND ITS LIMITATIONS 
 
Broadly, CCF models fit into the following categories: 
• Basic Parameter Model – calculates the CCF basic event directly from data [5]. The Basic 

Parameter model cannot estimate CCFs for redundancy configurations for which data is 
unavailable, and for this reason is rarely used directly. 

• Ratio Models (e.g.Beta Factor, Alpha Model and Multiple Greek Letter Models) – assume the 
number of CCF events is a transferable empirical ratio between failure rates and CCF rate [6]. 
Ratio estimates are calculated from generic data from sources like the NRC CCF Data Base 
(CCFDB) [7] and combined with system specific failure rates to obtain CCF estimates. 

• Shock Models – assume that each component within the CCCG receive shocks according to 
a Poisson process. Each failure event is modelled from a Bernoulli trial of each component to 
the shock.  

 
All models rely on each component belonging to only one CCCG. This forces the assumption that each 
component within the CCCG is identical in design, but also identical in its dependencies between each 
other component within the CCCG. Dependencies to components outside the CCCG cannot be 
modelled. This restricts CCF modelling to only identical components in redundant configurations with 
identical dependencies, which is rarely accurate.  
 
Furthermore, all models rely on impact vectors from generic CCF databases. Impact vectors do not 
account for the type of failure cause or coupling factors. These models cannot incorporate system 
specific defenses against coupling factors or causes, and the system response to a specific failure cause 
cannot be assessed.  



4. GENERAL DEPENDENCY MODEL (GDM) 
 
The GDM has been proposed to enable event assessment with knowledge of the failure event’s 
characteristics. It can model the increased and decreased propensity of a system to experience CCF 
based on the system features such as causes, coupling factors and defenses and seeks to model 
asymmetrical components and dependency relationships. The GDM will retain the modeling of different 
multiplicities of failures and allow for parameter estimation using the impact vector methodology. 
 
4.1. Model Structure 
 
4.1.1. Component Failure Probability 
 
The GDM defines the component failure rate, ܳ௧ as the combination of component failure probabilities 
for each failure cause. To the component, each cause is independent of each other and the component 
failure probability can be calculated using rare event approximation: 
 
 

ܲሺܣሻ ൌ ܳ௧ ൌ෍ܳ௧,௜

௪

௜ୀଵ

 (1)  

 ܣ A random variable for the failure of component = ܣ
ܳ௧ = The total failure probability for a component 
ܳ௧,௜= The failure probability of a component due to cause ݅. 

 
C୧,  is a condition from which a failure can occur due to cause i. The probability that a cause condition 
exists is ܲሺܥ௜ሻ ൌ ܳா,௜. Given ܥ௜, the component failure probability is ݌௜ the probability of component 
failure due to cause ݅ is: 
 ܳ௧,௜ ൌ   ௜ܳா,௜ (2)݌

 .݅ ௜ = the probability a component fails when tested by cause݌
 

 
Figure 1: GDM Basic Events 

4.1.2. Component Dependency 
 
Thus far the model has included the cause conditions and failure probabilities which are local to a 
component. It is possible that multiple components share the same cause condition due to a coupling 
factor. The presence of coupling factors between components is identified during the qualitative 
assessment of the target system features as described in NUREG/CR-5497 [2]. By coupling the cause 
condition, instead of failures, the model can better describe the physical phenomena of CCF and model 
asymmetrical relationships. 



 
For example, the figure below shows an emergency diesel generator (EDG) and pump which share the 
same location. If the EDG suffers from an extreme environmental condition, then the pump will also 
experience the same condition (or shock). The difference between the EDG and pump in the presence 
of such a cause condition, is the fragility of each component to withstand the shock, ݌௜. 

 
Figure 2: GDM Coupling Components 

4.1.3. Propagation of Cause Condition 
 
The model, thus far, has assumed a certain (deterministic) propagation of a cause condition to other 
components, where a coupling factor exists. However the propagation of a cause needs to be 
probabilistic. For example, an inexperienced tradesman makes a maintenance error on an EDG before 
progressing to maintain a second EDG. Despite the maintainer coupling the two components, the 
likelihood of the second EDG suffering the same maintenance error is probabilistic. Without making 
this relationship the model could not account for occasions when components have high fragility to a 
cause condition, and a low probability of CCF or where defenses against cause condition propagation 
exist such as protecting against environmental causes by moving components into separate rooms. 
 
The GDM separates the local cause condition for each component. Local cause conditions can propagate 
to other components probabilistically using a coupling strength factor, ߟ௜. 
 
The coupling factor strength, ߟ௜, needs to scale between the following two extremes. When the coupling 
factor strength is zero, ߟ௜	=0, there is no chance that the local cause condition at one component can 
propagate to the second component. When the coupling factor strength is one, ߟ௜	=1, a cause condition 
can only be present at both components simultaneously. GDM splits each local cause into cause 
condition probability, ܳா,௜ into independent (ܳூா,௜) and common error (ܳ஼ா,௜) probabilities: 
 ܲሺ ௜ܺሻ ൌ ܳ஼ா,௜ ൌ   ௜ܳா,௜ (3)ߟ
 ܲሺܫ௜ሻ ൌ ܳூா,௜ ൌ ሺ1 െ   ௜ሻܳா,௜ (4)ߟ

௜ܺ = random variable for the common cause condition for cause i. 
  .௜ = random variable for the independent cause condition for cause iܫ
 .௜ = the coupling factor strength for cause iߟ

 
The common and independent cause conditions are mutually exclusive events. Therefore the local cause 
condition probability is the sum of the independent and common cause condition probabilities. 
௜ܥ  ൌ ௜ܫ ∪ ௜ܺ (5)  
 ܳா,ாா ൌ ܳூா,ாா ൅ ܳ஼ா,ாா (6)  

  .௜ = A random variable for the existence of cause condition iܥ
ܳா,௜= The cause condition probability of cause ݅. 

 
Figure 3 shows the construction of the GDM with consideration for a coupling factor strength parameter. 
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Figure 3: GDM Modelling of Cause Condition Propagation. 

4.1.4. Parameter Description 
 
One strength of GDM is that the parameters can be interpreted as physical features of the system being 
modelled. For each failure cause classification, the GDM has three parameters, the component fragility, 
the cause condition probability, and the coupling factor strength. 
 
Fragility. ݌௜ is the probability a component will fail given that a cause condition is evident for cause ݅. 
It is a measure of the components ability to resist failure. The component’s fragility is affected by such 
things as the component’s design, materials, derating and compliance to reliability durability standards. 
 
Cause Condition Probability. ܳா,௜ is the probability that the Cause condition for cause ݅ is present. 
The cause condition probability represents the frequency and strength of failure causes. It is a function 
of features such as quality assurance, process maturity, and human performance shaping factors. This 
parameter is similar to the Binomial Failure Rate Model’s, rate of shocks and max exist for extended 
periods of time. 
 
Coupling Factor Strength. ࢏ߟ is the probability that if a cause condition exists at a component, that it 
will be propagated to other components. The coupling factor strength is a measure of the strength in 
dependency between components including coupling factor defenses. 
 
4.2. Parameter Estimation 
 
For each cause the model is fully specified once the three parameters ݌௜, ܳா,௜,  ,௜ are known. Howeverߟ
using data from the NRC failure databases, the observable quantities are: 
• The failure rate for a component due to cause ݅, ܳ௧,௜. 
• The propensity for CCF due to cause ݅ in a perfectly symmetrical CCCG, ߙଶ,௜. 
 
4.2.1. GDM Relationship to ܳ௧,௜ 
 
The failure probability for cause ݅, ܳ௧,௜ is an observable metric which can assist in the calculation of the 
GDM parameters through the relationship: 
 
 ܳ௧,௜ ൌ   ௜ܳா,௜ (7)݌
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The point estimate for the failure probability of a component due to cause ݅, ܳ௧,௜ is: 
 
 ܳ௧,௜ ൌ

݊ி,௜
ଵܰ

 (8)  

 
݊ி,௜ =  the total number of failures due to cause ݅. 
ଵܰ =  the total number of demands on a single component. 

 
The quantities, ݊ி,௜ and  ଵܰ are component event data, as opposed to CCF event data. For example, if 
two components are in redundancy, assume that when the system is demanded, both components are 
demanded. In the first demand, component 1 fails. In the second demand, component 2 fails, in the third 
demand, no components fail. Then each component was demanded 3 times, making a total of 6 
component demands for the system with two failures. The failure probability is ܳ௧,௜ ൌ 2

6ൗ ൌ 1
3ൗ .   

 
4.2.2. GDM Relationship to ߙଶ,௜ 
 
The CCF data measures the strength of a coupling factor through the frequency of CCF events observed. 
In the AFM, this is quantitatively measured through the use of alpha factors. An alpha factor specific to 
each cause, (Partial Alpha Factor) may be calculated using impact vectors [8] and therefore ߙଶ,௜ it is a 
convenient measure to use for estimating GDM parameters.  
 
GDM uses an assumption that each component has a Bernoulli trial in the presence of a cause condition, 
and will fail with probability ݌௜. Therefore higher multiplicities of failure are not explicitly modeled, 
which is similar in concept to the Binomial Failure Rate Model (BFRM). Furthermore the assumption 
required to estimate the AFM parameters requires all components within the CCCG were perfectly 
symmetrical in design, use and dependencies. The higher the size of a CCCG, the less likely it is this 
assumption is satisfied. Therefore it is proposed that only the second alpha factor is required. This has 
the advantage that there is likely to be much more data on CCCGs with two components, than larger 
groups.  
 
In order to obtain a relationship between ߙଶ,௜ and GDM, the results from the event assessment of a two 
train, perfect symmetry system has been analyzed using both the Partial Alpha Factor method [8] and 
GDM. Using Partial Alpha Factors the probability of failure for a component ܣ௜, given knowledge of 
component B failing due to cause ݅, is: 
 
 ܲሺܣ௜|ܤ௜ሻ ൌ ଵ,௜ߙ

ଶ ܳ௧ ൅   ଶ,௜ (9)ߙ
 
The ߙଶ term is the probability of CCF while the remaining term, ߙଵ,௜

ଶ ܳ௧, is the normalized probability 
of independent failure for component ܣ௜. The same calculation can be done using GDM. The cause node 

for component B, ܥ௜
ሾ஻ሿ,  is instantiated as true, and the probability for the second component A failing 

due to that cause is calculated as:  
 
 

ܲ ቀܣ௜ቚܥ௜
ሾ஻ሿቁ ൌ

௜ߟ௜ܳா,௜ሺ݌ െ 1ሻଶ

1 െ ܳா,௜ െ ܳா,௜ሺߟ௜ െ 1ሻ
൅  ௜ (10)ߟ௜݌

 
It can be shown that the term ݌௜ߟ௜ is the probability of CCF. The remaining term, is the normalized 
probability of independent failure for component  
 
Therefore, when the GDM model is calculated for two components with perfect symmetry: 
 
௜ߟ௜݌  ൌ  ଶ,௜ (11)ߙ

 
When the failure cause taxonomy is defined in such a way that each cause could only propagate through 



one coupling factor, the point estimate for the partial alpha factor is: 
 
ଶ,௜ߙ  ൌ

݊ଶ,௜
݊௧,௜

(12) 

Where 
 

݊௧,௜ ൌ ෍݊௞,௜

ଶ

௞ୀଵ

 (13) 

 ଶ,௜ =  a partial alpha factor which represents the portion of system failure eventsߙ
which resulted in 2 components failing within a common cause component 
group of size 2 when there was a potential for failure propagation through 
coupling factor  i where i  {1,2,3,…,w} 

݊௞,௜ =  the number of failure events/frequency which resulted in k components 
failing within a common cause component group of size m, (1 ≤ k ≤ 2) of 
coupling factor i where i  {1,2,3,…,w} 

݊௧,௜ =  the total number of CCF events for coupling factor/cause i where i  
{1,2,3,…,w}. 

 
4.2.3. Estimation Using Observed Data 
 
The two relationships have been established,  ܳ௧	,௜ ൌ ଶ,௜ߙ  ௜ܳா,௜   and݌ ൌ  ௜ above. To complete theߟ௜݌
estimation of the GDM parameters, one of the three parameters must be estimated through other means. 
Quantification of the remaining parameter can be conducted from: 
 
• Direct assessment from data which represents a parameter. 
• Using constraints from asymmetrical components.  
• Assume ߟ௜ ൌ 1 as per Binomial Failure Rate Model. 
• Estimate from parametric failure model, such as human reliability models for human cause 

conditions, ܳா,௜ or load strength interference model for ݌௜. 
• Engineering assessment. 
• Solve using data from higher levels of alpha factors. 
 
Where a components share a cause, a third constraint is imposed where the cause condition rate of both 
components must be equal. The third equation is: 
 
 ܳ஼ா,௜ ൌ  ௜ܳா,௜ (14)ߟ

 
Each type of cause lends itself better to different types of estimation techniques for the third parameter 
for example: 
 
• Human Error Cause. The area of Human Reliability Assessments is rich with literature and 

parametric models.  Therefore human causes may be best suited to parametric modeling to 
estimate ܳா,௜ or ߟ௜. Failing this, an engineering assessment of ߟ௜ would be the next best option.  

• Procedural Error Cause. Where components are coupled by the same procedure, it is highly 
likely that if one component is affected, then all shared components may be affected. Therefore 
procedural errors may be suitable for the assumption ߟ௜ ൌ 1 or an expert elicitation estimate 
of ߟ௜. 

• Environmental Error Cause. Unlike the other causes, environmental cause conditions may be 
detectable using sensors. In such cases, ܳா,௜ may be estimated directly from cause condition 
data. Where this is not possible, the propagation of environmental causes will change between 
systems depending on the location and building design housing components. Therefore 
environmental causes may be suitable for an expert elicitation estimate of ߟ௜. 

 
  



4.3. GDM in Event Assessment 
 
A strength of the GDM model is the flexibility when conducting event assessments. Three event 
assessment scenarios will be presented: 
• Event assessment with knowledge of a component failure 
• Event assessment with knowledge of a component failure and failure cause 
• Event assessment with virtual evidence about the component failure cause 
 
In order to demonstrate the model capabilities within event assessment an example involving non-
asymmetrical components will be used.  
 
4.3.1. Example: Two Train EDG and Pump System 
 
The example system consists of a mixture of pumps and generators with varying levels of dependency. 
The systems objective is to provide water to a cooling system. The two train system, only requires one 
train to be running in order to provide sufficient water. A pump requires power from an Emergency 
Diesel Generator to operate. One of the trains has two pumps in redundancy, resulting in a total of 
three pumps for the system.  
 

The failure probability for an EDG is also assumed to be ܳ௧
ሾாሿ ൌ 0.006 and the failure probability for a 

pump is assumed to be  ܳ௧
ሾ௉ሿ ൌ 0.00204. The reliability block diagram is shown in Figure 4. 

 

 
Figure 4: Reliability block diagram - Two EDGs and three pump system 

 
P(s) is 4.82e-5 and the cut sets are:	ሼܧଵ, ;	ଶሽܧ 		ሼ ଵܲ, ;	ଶሽܧ ሼ ଵܲ, ଶܲ, ଷܲሽ; 	ሼܧଵ, ଶܲ, ଷܲሽ	 
 
4.3.2. Qualitative Analysis 
 

Table 1: Qualitative dependency assessment for example 
Component Install Procedure Maintenance Staff Location 
EDG 1 (E1) EDG Team X Room Y 
EDG 2 (E2) EDG Team X Room Y 
Pump 1 (P1) Pump V1.1 Team X Room Y 
Pump 2 (P2) Pump V2.8 Team X Room Y 
Pump 3 (P3) Pump V1.1 Team Y Room X 

 
Figure 5 shows the GDM structure for the example system with local cause conditions being removed 
for brevity. All dependencies can be represented within the model without the assumption of symmetry. 
Quantification of this model will be discussed in a future paper. 



 
Figure 5: GDM System Model in Genie 

4.3.3. Knowledge of Failure 
 
The procedure for conducting event assessment using the Bayesian Network is shown in Figure 9. The 
analyst applies evidence to the node and the other node values are updated. The system failure 
probability has increased from 2.152e-4 to 3.810e-2 with only knowledge of the pump failure. Notice 
that the failure probabilities of the EDGs increases because the pump failure may have been caused by 
the maintenance team or external environment which is shared by the EDGs.  

 
Figure 6: Event assessment for component P1 failing using GDM 

 
4.3.4. Knowledge of Failure Cause 
 
Where the failure cause is known, the system equation can be updated by instantiating the local cause 
node as true. In the example an event assessment where Pump 1 has failed due to a Maintenance Human 
cause condition is shown in Figure 7. The EDG1, EDG2, Pump 1, and Pump 2 all share the same 
maintenance team. With Pump 1 failing due to a human error from that maintenance team, the Bayesian 
Network now propagates this evidence, and increases our belief that EDG1, EDG2 and Pump 2 could 
fail. The probability of system failure with this new evidence increases from 3.810e-2 to 5.265e-2. 



 
Figure 7: Event assessment for component P1 failing due to EE using GDM 

 
The probability of system failure for each possible cause for Pump 1 is contained in Table 3.  As can be 
seen, if the cause had of been an installation error, the system failure probability would have dropped 
from 3.810e-2 to 1.351e-2. This would have been due to Pump 1 only sharing the same installation 
procedure with Pump 3 and so the options for the failure to propagate to the rest of the system is limited. 
 

Table 3: Event Assessment for Example 2 with different failure causes 
Cause ࡼሺࡿሻ GDM 
Unknown ܲሺܵ|ܣሻ 0.03810 
Install Procedure Error ܲሺܵ|ܣ,  ூ௉ሻ 0.01351ܥ
Maintenance Human Error ܲሺܵ|ܣ, ெுሻܥ 0.05265 
External Environment Shock ܲሺܵ|ܣ, ாாሻܥ 0.03789 

 
4.3.5. Uncertain Knowledge of Failure Cause 
 
CCF characteristics may be difficult to interpret from reports. The impact methodology aims to capture 
this uncertainty in a CCF database, however this cannot be used when conducting event assessment. 
Virtual Evidence can be applied to the Bayesian Network where the analyst is unsure of a node’s state 
Such evidence during event assessment might be available from an initial incident investigation where 
the failure cause cannot distinguish between causes. The analyst must estimate the odds that each node 
is true over the other node states.  
 
For example, an analyst might believes there is a 30:70 chance that the failure of pump 1 was due to 
cause Maintenance Human, and a 70:30 chance that it was due to Installation Procedure. The external 
environment cause has been ruled out. The Bayesian Network before and after the virtual evidence has 
been applied is shown in Figure 8 and Figure 9 respectively. The probability that the failure was caused 
by Maintenance Human has dropped from 0.71 to 0.32. Given the more likely cause is now a pump 
installation problem, the system probability has dropped from 0.04 to 0.02. 
 



 
Figure 8: Event assessment for component Pump 1 prior to applying virtual evidence 

 

 
Figure 9: Event assessment for component Pump 1 after applying virtual evidence 

 
4.4. Extensions and Future Development of GDM 
 
This paper has focused on a model to replace current component level CCF models. However, there are 
a number of possible extensions to improve the model’s accuracy, flexibility or maturity, including: 
• Scalability –Use of a Bayesian Network, allows the GDM to model multiple levels of 

causality through either the GDM cause condition construct, or normal Bayesian Network 
nodes to model probabilistic dependencies. The definition of cause condition is not confined 
to a level of causality and is easily redefined. However, an alternative approach is to create a 
network of nodes between the cause condition and the component failure. 

 



• Consistency of Asymmetrical Components –While the GDM is already capable of 
asymmetrical component modelling, improvements can be made to the procedures for 
ensuring consistency, particularly when multiple asymmetrical components require 
integration. 

• Failure Taxonomy Development – Current NRC CCF taxonomy is ambiguous when 
inferring which failure causes could propagate through which coupling factors. An industry 
informed, unambiguous failure classification taxonomy for CCF will be necessary. 

 
5. CONCLUSION 
 
Traditional PRAs model dependency through deterministic relationships in fault trees and event trees or 
through empirical ratio CCF (CCF) models. Current CCF models are restricted to identical components 
in redundant formations and cannot incorporate system specific defenses against dependencies. Due to 
these restrictions current CCF models are not suitable for event assessments.  
 
To overcome these limitations, this paper proposed the General Dependency Model (GDM), which uses 
Bayesian Networks to model the probabilistic dependencies between components via three parameters 
for each failure, fragility, cause condition probability, and coupling factor strength which relate to 
physical attributes of the system being modelled. 
 
Through the use of an example, this paper showed how an analyst could build and quantify the GDM 
using similar inputs to that of current CCF methodologies. It also showed how the GDM can 
accommodate uncertain evidence, asymmetrical components, coupling factor strength, as well as 
providing insight into the change in propensity of a system to experience CCF based on actual system 
features.  
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