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Abstract: Common Cause Failure modeling for Probability Safety Assessments has become standard 
practice in many industries. Of the numerous models proposed to include common cause, one of the 
most widely adopted has been the Alpha Factor Model, which is supported by the US Nuclear 
Regulatory Commission CCF database and software tools.  
 
The Alpha Factor Model (AFM) uses an empirical ratio between the independent failures and CCF 
failures to quantify the model parameters. While this has been advantageous in allowing the prediction 
of system reliability with little or no data, it has been limiting in other applications such as modeling the 
characteristics of a system design or including the characteristics of failure when assessing the risk 
significance of a failure or degraded performance event (known as an event assessment). 
 
This paper proposes a new CCF model called the Partial Alpha Factor Model (PAFM), which extends 
the AFM to allow the explicit modeling of coupling factors between components such as shared 
maintenance, or shared location. Using this more explicit modeling allows the model to be tailored 
depending on how far the system design defends against such dependencies. By using the principles of 
the AFM as the basis for this new model, its implementation may be feasible without modification to 
existing PRA software or significant changes in data collection requirements.  
 
Keywords:  Common Cause Failure, Alpha Factor Model, Partial Alpha Factor Model, Dependency 
Modelling.  
 
1.  INTRODUCTION 
 
Common Cause Failures (CCFs) are ‘simultaneous’ failures of a two or more components due to a 
shared event. These types of failures have the ability to cut through multiple layers of redundancy and 
cause unforeseen coincidental events that will put safety critical systems in jeopardy. During the 1980s 
the PRA community first developed quantitative CCF models, however with CCF event data being so 
scarce, a consolidated effort by the nuclear industry established data collection methods to support the 
quantitative models.  These data collection activities aligned themselves to quantitative method which 
used impact vectors such as the Alpha Factor Model (AFM).  With software and data to support the use 
of the AFM it quickly became one of the most common CCF models to be used within the nuclear 
industry.  
 
Since the AFM was first proposed, PRAs have gradually expanded as a management and decision tool 
beyond the simple quantification of system failure probabilities. In the nuclear industry, PRAs are 
increasingly used to support the following activities [1]: 
 
• decisions on safety and performance improvement, 
• evaluation of proposed modifications, 
• assessment of new designs, and 
• event assessment and significance determination.  
 
Whilst the AFM allow for the quantification of soft dependencies at a system level, they are inadequate 
for providing further insight into the causes of CCF which are necessary to inform mitigation strategy 
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development. Furthermore, without any cause information contained within the model, it cannot provide 
an accurate assessment of the system response to failure (also known as event assessments). It has 
become evident that the commonly accepted CCF modeling methodology [2] and corresponding tools 
need to be enhanced to meet these emerging PRA activities. 
 
2.  RATIO AND ALPHA FACTOR CCF MODELS 
 
Ratio models are based on the hypothesis that system specific estimates for CCF can be made by 
combining generic average ratio parameters with system specific single/total failure rates [3]. This 
provides the advantage that ratio models can be estimated from specific data collection activities such 
as the Common Cause Failure Database [4] and applied to areas where CCF data may not exist. Popular 
ratio models include the Beta Factor Model, Alpha Factor Model and the Multiple Greek Letter Model. 
 
Limitations of ratio models include: 

 Assumes a transferable empirical ratio between failure rates and Common Cause Failure rate. 
 Assumes component symmetry. 
 Assumes all failure causes have the ability to propagate within the Common Cause Component 

Group (CCCG) 
 No inference can be made given knowledge of the failure cause. 
 The model cannot account for unique system architectures which may contribute or defend 

against CCF. 
 Ambiguity in the interpretation of single failures being modeled as independent failures, 

particularly when applying impact mapping rules. 
 
The alpha factor model (AFM) is a failure event ratio model that was first proposed by Mosleh and Siu 
in 1987 [3]. Each  factor is the probability that given a failure it will fail k components out of m 
components within the Common Cause Component Group (CCCG). The AFM parameters are defined 
and calculated as (Mosleh et al. 1998): 
 

∑
 (1)  

 
	 		 the	number	of	redundant	components	
	 		 the	number	of	failure	events/frequency	which	resulted	in	k	components	failing	within	a	

common	cause	component	group	of	size	m,	 1	 	k	 	m .	
	 		 the	fraction	of	total	failure	events/frequency	that	occur	in	the	system	resulting	in	k	out	of	

m	failures.	
 
The main difference between the AFM and some other ratio models (such as the Beta Factor Model) is 
the ability for the AFM to model multiplicities of failure.  
 
CCF data collection activities such as the ICDE database make quantitative CCF modeling accessible 
to analysts. However these databases were designed around the concept of an impact vector which does 
not explicitly use information about the failure causes. Causal information has only been used to obtain 
insights into the CCF phenomena through qualitative analysis [5–9]. Since 2004 the failure causes for 
single failure data have also been recorded within the NRC CCFDB [10]. This has provided an 
opportunity to further conditionalize the Alpha Factor Model (AFM) parameters based on failure causes.  
 
3.  OBJECTIVE OF PARTIAL ALPHA FACTOR MODEL 
 
The development of the Partial Alpha Factor Model (PAFM) is motivated by a need to conduct event 
assessments using knowledge of the failure cause, whilst minimizing changes to the popular AFM 
methodology. The PAFM will add consideration of failure cause as shown in Figure 1. 
 
 



 
Figure 1: Failure Event Conditionalization 

 
This conditionalization allows the use of the failure cause during event assessments and allows system 
specific coupling factor dependencies to be added or removed in the model. By dividing the data into a 
further category the estimates become more difficult when limited data is available. Despite this 
limitation, the total system failure probabilities will be no worse than using the AFM.  
 
3.  PARTIAL ALPHA FACTOR MODEL OVERVIEW 
 
The PAFM follows the same basic principles as the Alpha Factor Model, that the quantification of CCFs 
is a ratio between the component failure rate and the quantity of CCF events. However the PAFM uses 
this concept for each possible failure cause. This introduces two parameter types. 

 Partial Alpha Factors (PAF) which represent the propensity of a failure to propagate to other 
components through a particular coupling factor.  

 Gamma Factors (GF) represent the portion of system failure which have the potential to 
propagate through the coupling factor. 

 
An Assessed Alpha Factor is calculated using a combination of gamma factors and partial alpha factors. 
Assessed alpha factors can be used in exactly the same way as the AFM parameters. The AFM is a 
special case of the PAFM when the components within a Common Cause Component Group share all 
coupling factors.  
 
With these revised definitions, the AFM CCF analysis procedure detailed in NUREG/CR-5485 [2] is 
modified to implement the PAFM: 

1. Qualitative Screening. A component may be a member of multiple CCCGs based on its coupling 
factor with other components (noting that the component can only be in one CCCG for each 
coupling factor). For example, if pump 1 shares its maintenance team and location with pump 
2 and shares its installation procedure with pump 3, pump 1 will be part of two common cause 
component groups: 	 ,  and , . 

2. Identification of Common Cause Basic Events. The CCCBEs will be constructed with 
consideration for all CCCGs which the component is a part of. E.g.  , . 

3. Parameter Representation of CCBEs. The CCBEs are quantified using the Basic Parameter 

which accounts for multiple CCCGs. For example , ,  and 

 



4. Alpha Factor Model Parameterization. The new AFs are quantified using a combination of 

PAFs. E.g. 
1
1 . . . 

5. Parameter Estimation – Impact Vectors. The system total impact vectors are calculated for each 
failure cause within the database. 

6. Parameter Estimation – Partial Alpha Factor Model. The PAFS for each failure cause are 
calculated. The GF representing the frequency of each cause is calculated. The alpha factor for 

each CCCG (i.e ) is calculated. 

7. System Quantification and Results Interpretation. The remainder of the CCF analysis process 
is identical to using the AFM. 

 
4.  PARAMETER ESTIMATION 
 
NUREG/CR-6823  [4] discusses a number of methods for conducting data analysis and parameter 
assessments, however this section will use two formulations of parameter estimation, a classical 
(frequentist) interpretation using Maximum Likelihood Estimates and Bayesian methodology with 
conjugate priors. The following estimates have been formulated with the assumption that only one cause 
could propagate through one coupling factor. Estimates have been developed when this is not the case 
and will be presented in future papers. 
 
4.1. Partial Alpha Factor Estimation 
 
The maximum likelihood estimate for the PAF is: 
 
 

,
,

∑ ,

,

,
 (2)  

 
, 	 		 a	partial	alpha	factor	which	represents	the	portion	of	system	failure	events	which	resulted	

in	k	components	failing	within	a	common	cause	component	group	of	size	m,	 1	 	k	 	m 	
when	there	was	a	potential	 for	failure	propagation	through	coupling	factor	 	 i	where	i		
1,2,3,…,w 	

, 	 		 the	 number	 of	 failure	 events	which	 resulted	 in	 k	 components	 failing	within	 a	 common	
cause	component	group	of	size	m,	 1	 	k	 	m 	of	coupling	factor		i	where	i		 1,2,3,…,w 	

, 	 		 the	 total	number	of	 common	cause	 failure	events	 for	coupling	 factor/cause	 i	where	 i		
1,2,3,…,w .	

 
The Bayesian estimates for PAF are: 
 ∼ Dirichlet  (3)  

 
	 		 the	portion	of	 failure	 events	 for	 each	multiplicity	 of	 failure	 , , , , … , , 	for	 failure	

cause	i.	
	 the	 equivalent	 count	 of	 failure	 events	 for	 each	 multiplicity	 of	 failure	 with	 cause	 I		

, , , , … , , 	
 
The parameter , which is the unknown of interest (UOI), can be estimated using Bayes’ rule: 
 

|
|

∑ , ,
 (4)  

 
			 	is	the	prior	distribution	of	the	parameter		 	
| 	is	the	likelihood	equation	for	observing	the	evidence	 	given	the	parameters		 .	



| 	the	posterior	distribution	of		 	given	the	evidence		 		
		 	the	number	of	failure	events	for	each	multiplicity	of	failure		 , , , , … , , 	for	failure	

cause	i.	
		 	the	portion	of	failure	events	for	each	multiplicity	of	failure	 , , , , … , , 	for	failure	

cause	i.	
 
The likelihood equation of observing the number of failures in each failure cause category, 

, , , , … , ,  is distributed as a multinomial distribution with parameters , , , , … , , . 
 ∼ Multinomialm , ,  (5)  
  (6)  

Therefore the hyper parameters, , for the posterior  given evidence  using a Dirichlet prior with 
parameters, , , is: 
 ,  (7)  

 
The choice of a prior distribution parameters, , , depends on the availability of data as discussed in 
detail by Siu and Kelly [11]. 
 
4.1. Gamma Factor Estimation 
 
The maximum likelihood estimate for the GF is: 
 ,

∑ ,

,  (8)  

 
	 		 the	portion	of	failure	events	which	had	the	potential	to	propagate	through	coupling	factor	

i	where	i		 1,2,3,…,w 	
	 		 the	total	number	of	failure	events/frequency.	

 
The Bayesian estimates for GF is: 
 ∼ Dirichlet  (9)  

 
	 		 the	portion	of	failure	events	for	each	cause	 , , … , 	
	 the	equivalent	count	of	failure	events	for	each	cause	 , , … , 	

 
The point estimates for each gamma factor can be obtained using: 
 

∑
 (10)  

 
The parameter , which is the unknown of interest (UOI), can be estimated using Bayes’ rule: 
 

|
|

∑
 (11)  

 
			 	is	the	prior	distribution	of		the	parameter		 	
| 	 	is	the	likelihood	equation	for	observing	the	evidence	
| 	 	the	posterior	distribution	of		 	given	the	evidence		 		
		 	the	number	of	failure	events	for	each	cause		 , , , , … , , 	
		 	the	portion	of	failure	events	for	each	cause	 , , … , 	

 
The likelihood equation of observing the number of failures in each failure cause category, 

, , , , … , ,  is distributed as a multinomial distribution with parameters , , … , . 
 ∼ Multinomialw ,  (12)  

 
Therefore the hyper parameters, , for the posterior  given evidence  using a Dirichlet prior with 
parameters, , is: 
  (13)  



 
The choice of a prior distribution parameters, , depends on the availability of data as discussed in 
detail by Siu and Kelly [11]. 
 
5. EXAMPLE 
 
A cooling systems objective is to provide water to a cooling system using three pumps and two 
generators. Only one pump needs to be running in order to provide sufficient water. A pump requires 
power from only one generator to operate. The failure probability for each generator is also assumed to 

be 0.006 and the failure probability for a pump is assumed to be  0.002. The fault tree 
with the system failure rate is shown in Figure 2. 

 
Figure 2: Fault tree for example 2 – Two train Emergency Diesel Generator and pump system 

 
The minimal cut sets for the second example system are: 
 

, 	; 		 , 	; , , ; 	 , , 	 
 
5.1. Qualitative Analysis 
 
Qualitative analysis involves finding CFs that can help define CCCGs. This is achieved by finding 
qualitative dependencies between components as illustrated in Table 1.  
 

Table 1: Qualitative dependency assessment  
Component Install Procedure Maintenance Staff Location 
EDG 1 (E1) EDG Team X Room Y 
EDG 2 (E2) EDG Team X Room Y 
Pump 1 (P1) Pump V1.1 Team X Room Y 
Pump 2 (P2) Pump V2.8 Team X Room Y 
Pump 3 (P3) Pump V1.1 Team Y Room X 

 
While the EDGs are symmetrical (in that they share all CFs), pumps 1 and 2 only share the same 
maintenance team and location (two coupling factors). Pumps 1 and 3 share an installation procedure 
only (one coupling factor). Note that as per the AFM, CCCGs can only formed with like components. 
Therefore the following Common Cause Component Groups Exist: 
 

, , 	 , , , . 
 



5.2. Identification of Common Cause Basic Events 
 
The CCBEs will be constructed with consideration for all CCCGs which the component is a part of. If 
a component belongs in multiple CCCGs, then the CCBEs for both CCCGs would be added. The CCBE 
events for the example system are shown in Table 2. 
 

Table 2: CCBE for example system 
Component Common Cause Basic Events 
EDG 1 ( ) , , ,  
EDG 2 ( ) , , ,  
Pump 1 ( ) , , , , ,  
Pump 2 ( ) , , ,  
Pump 3 ( ) , , ,  

 
5.3. Fault Tree Development 
 
The CCBEs are incorporated into the fault tree as basic events. The fault tree for the example after 
substitution of CCBEs is shown in Figure 3. 
 

 
Figure 3: Fault tree for example with CCBEs 

 
The cut sets with CCBEs are: 

, , , 	; 	 , , , 	; , , , , , ; 	 , , , , , ; 

, , , ; , , , ; , , , ; , , , ; 

, , , ; 	 , 	 
 
Note that the cut set , , ,  treats the failure of a single component due to different causes in 
separate CCCGs as independent, not mutually exclusive. This is the same assumption used to separate 
individual and common cause basic events. Generally, as CCBEs are treated as independent events (not 
mutually exclusive), this may produce a lower estimate of the component failure rates.  
 
5.4. Parameter Representation of CCBEs 
 
For the example system, the CCBEs are equal to: 
 

, ,  

,  

, ,  , ,  ,  

(14)  



, ,  ,  
 
In comparison to the AFM, the pumps are not symmetrical and so: 
  (15)  

 
Using rare event approximation, the system equation is now: 
 

 

(16)  

 
5.5. Partial Alpha Factor Model Parameterization 
 
The Basic Parameter values are quantified using assessed AFs which add the contribution from the 
relevant dependencies. The CCBEs are quantified using assessed alpha factors.  
 1

1
 (17)  

 
For the example, the basic events for each component are: 
 ′ , ′ .  (18)  

 
The EDGs are symmetrical and therefore the basic events are: 

 ′ , ′ .  
 

(19)  

 ′ ,
, ,

 

 

(20)  

 ′ 1 ′  (21)  

 
The pumps in  only share the maintenance team and external environment. The assessed alpha 
factors will not include the contribution from installation procedures.  

 ′ .  
 

(22)  

 ′ ,
,

 

 

(23)  

The pumps in  only share installation procedure and the assessed alpha factor will not include 
the contribution from maintenance team and external environment.  

 ′ .  
 

(24)  

 ′ ,  (25)  

 
The assessed alpha factors for each pump may now be calculated as the remaining failure events.  

 ′ . , ′ 1 ′ ′  

′ . , ′ 1 ′  

′ . , ′ 1 ′  

(26)  

 
 
 



5.6. Parameter Estimation – Impact Vectors 
 

Impact vectors are calculated for each CCF in accordance with NUREG/CR-5485 [2]. The primary 
difference is that the average impact vectors are calculated for each cause. Assume for this example that 
the sum of the EDG average impact vectors, for each cause is: 

 
, 0, 172.2, 2.8  

, 0, 154.35, 3.15  

, 0, 16.45, 1.05  

29400 

(27)  

 
The sum of the pump average impact vectors for each cause is: 

 
, 0, 26.0663, 0.1838  

, 0, 59.4125, 1.838  

, 0, 82.5213, 4.9788  

44433 

(28)  

 
5.7.  Parameter Estimation – Partial Alpha Factor Model 

 
In order to calculate the assessed alpha factors, the partial alpha factors and gamma factors must be 
calculated. For the example, the PAFs and GFs can be calculated as: 

 
,

0.18375
26.06625 0.18375

0.007 
26.25

26.25 61.25 87.5
0.15 

,
1.8375

59.4125 1.8375
0.03 

61.25
26.25 61.25 87.5

0.35 

,
4.97875

82.52125 4.97875
0.0569 

87.5
26.25 61.25 87.5

0.50 

  

(29)  

 
The assessed alpha factors can now be calculated as: 

 ′ ,
, ,

0.02 

′ ,
,

0.03895 

′ , 0.00105 

′ 1 0.96 

′ 1 0.96105 

	 ′ 1 0.99895 

(30)  

 
5.8.  System Quantification and Results Interpretation 

 
The parameter estimates may now be substituted back into the system equations. Instead of calculating 
the system probability of failure using the system equation, the following quantities can be placed into 
the fault tree for calculation: 

 
, , ′ 5.88 ‐3 

, ′ . 1.2 ‐4 

, ′ . 1.9584‐3 

, ′ . 1.9605 ‐3 

, ′ . 2.0379 ‐3 

(31)  



, ′ . 7.95 ‐5 

, ′ . 2.1 ‐6 
 

Substitution back into the system equation gives: 
 

 
1.668 ‐4 

(32)  

 
The system failure probability is calculated as 1.668e-4. 
 
6. CONCLUSION 
 
The PAFM aims to provide a cause-based CCF model which uses the same analysis methodology and 
data sources as the popular AFM. While minimized increases in complexity, the PAFM has the ability 
to create quantitative models using impact vectors, recognize efforts to create coupling factor defenses, 
and allow more sophisticated event assessments based on the observed failure cause. The PAFM does 
however use the same empirical ratio methods of the AFM and therefore most of the issues which exist 
with the current methodology remain. 
 
The PAFM is quantified using two parameters, the partial alpha factors ( , ) and the gamma factors 
( ).  The partial alpha factors represent the multiplicity of failures in a common cause component group, 
given a failure has occurred from cause .  The gamma factors represent the portion of failure events 
which are due to cause . These two parameters can be combined to provide an ‘assessed’ alpha factor 
which may be implemented in an identical way to the AFM for system modelling.  
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