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1. INTRODUCTION 
 
Optimizing the maintenance schedule for a component or a system, a classic problem in Engineering 
Asset Management (EAM), faces two major challenges. The first one is to build a realistic model that 
can be used to assess the efficiency of a given maintenance strategy. The second one is to handle the 
important combinatory of the optimization problem since, on a year based maintenance, the solution 
space size is growing exponentially with the operating time remaining. 
In this paper we present a general framework for risk-informed constrained maintenance scheduling 
optimization coupling a Genetic Algorithm (GA) and Monte-Carlo simulation algorithm. The 
performance and the parameters tuning of this Genetic Algorithm for Simulation Optimization 
(GASO) will be discussed based on a test case (finding the replacement dates minimizing the global 
owning cost of a single component with a Value at Risk constraint) with a special focus on the fitness 
function for which two alternatives have been studied.   
 
2. SIMULATION OPTIMIZATION REVIEW 
 
Taken separately, efficiency assessment issue and asset management strategy optimization issue have 
been addressed successfully and are widely described in the literature. Reliability and, more recently, 
industrial asset management models have been developed for decades to assess the efficiency of a 
maintenance strategy, on the technical point of view (reliability, availability or safety indicators) or on 
the financial one (discounted cash-flows, Net Present Value…). Many mathematical models and 
associated tools are used (Markov graphs, Piecewise Deterministic Markov Process, Petri Net…). 
These models are solved thanks to numerical calculation techniques or Monte-Carlo Simulation if the 
underlying model is more complex. 
 
On the other hand, finding the optimal schedule for maintaining a component is a hard optimization 
problem, as it is often impossible to write down the goal function as an easily optimizable function 
(linear, convex…), whether because the asset to model or the indicators to be optimized are too 
complex. Exact methods are then not usable (cutting plane methods for linear problems) or not 
efficient enough (branch and bound). An efficient alternative is to use approximation methods such as 
metaheuristics, among which one of the most popular is the genetic algorithm. 
 
Solving optimization problem for goal function assessed through simulation is a research area known 
as “Simulation Optimization” and it has been increasingly studied in the past fifteen years. A recent 
survey ([1]) identifies metaheuristics as the best methods for global integer optimization. The 
difficulty is then to associate Monte-Carlo simulation and Genetic Algorithm, as a matter of fact 
Monte-Carlo simulations need a large number of replications to narrow the results confidence interval 
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and Genetic Algorithms need to evaluate a large number of solutions to converge toward a global 
optimum, a simplistic coupling could lead to calculation durations too long to be tractable. Examples 
of coupling such algorithms have been described in cases where simulation durations were not an 
issue ([2]). In other cases ([3]), the confidence interval is taken into account to penalize the goal 
function but the convergence of solutions is not improved throughout the process. A sequential 
method, named OCBA, improving the convergence of “good solutions” throughout optimization, has 
been described in [4] and coupled to evolutionary algorithms for manufacturing or design problems 
([5]). 
 
In the field of maintenance and asset management, there have been very few uses of these methods but 
it would respond to a growing concern of decision makers who want to take multi-objectives and 
multi-constraints decisions for complex assets. It is then impossible to avoid using simulation to assess 
the objectives or to check constraints (especially risk-informed ones). One of the few examples found 
([6]) does not seem to have been widely used since, perhaps because the goal function (expected 
availability of a redundant system) could be approximated with a Markov process numerically 
calculable. 
 
 
3. METHOD 
 
3.1.  Asset Management Simulation Model 
 
A generic asset management model has been developed within EDF R&D to evaluate the profitability 
of an investments strategy for large assets of power plants. This model relies on a parallel evaluation 
of two strategies, the reference one and a new one that decision makers want to assess, replicated with 
a Monte-Carlo simulation tool. The only source of uncertainty taken into account in this model are the 
failure dates of the components, which is an aleatoric uncertainty as opposed to epistemic uncertainties 
such as maintenance costs or spare parts supply delays which aren’t modeled in EDF tool but analyzed 
through sensitivity analysis.  The generic method and tool have been discussed in [7]. 
 
For the purpose of this paper, the asset management model has been simplified to a single repairable 
component with a non constant failure rate. Repairs are assumed instantaneous, unavailability of the 
component after failure being taken into account in the sole total costs. Preventive replacement, 
assumed to be an As Good As New (AGAN) maintenance task, may be performed according to a date-
based maintenance program. Figure 1 shows the graph for such a model, for which: 
 

• λ is the failure rate of the component depending on its age 
• δ is the dirac function 
• π is the deterministic law modeling preventive replacements 
• t is the time 
• a is the age of the component 
• CF is the cumulated cash-flows 
• CCM is the corrective maintenance cost (including spare part costs, forced outage costs…) 
• CPM is the preventive maintenance cost 
• α is the discount rate 
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Figure 1 - Pseudo-Markov graph with transitions impacts on cash-flows for a single repairable 
component 

 
The Monte-Carlo simulation used to estimate the probabilistic distribution of the cumulated cash flows 
is described in Table 1. 
 
while r<NReplications 
 Total_Cash_Flow(r)=0; 
 t_failure=reliability_law(rand); 
 t_preventive_replacement=[t_pr_1;t_pr_2;…]; 
 while min(t_failure ;t_preventive_replacement)<T_final 
  t= min(t_failure ;t_preventive_replacement) ; 
  if t=t_failure 
   Total_Cash_Flow(r)+=corrective_cost*exp(-alpha.t); 
   t_failure=t+ reliability_law(rand); 
  else 
   Total_Cash_Flow(r)+=preventive_cost*exp(-alpha.t); 
   t_failure=t+reliability_law(rand); 
   delete(t,t_preventive_replacement); 
  end; 
 end; 
 r+=1; 
end; 

Table 1 - Pseudo-code for the single repairable component Monte-Carlo simulation 
 
3.2.  Genetic Algorithm 
 
The Genetic Algorithm (GA) was introduced by Holland in [9] and popularized by Goldberg [10]; it is 
a evolutionist meta-heuristic widely used for combinatorial optimization. It is based on an analogy to 
Darwin’s evolution theory on natural selection stating that, within a population, organisms with a high 
fitness are more likely to reproduce and to create offsprings with higher fitness. 
Genetic algorithms include different operators mixing global search (selection of best solutions, cross-
over to build new ones) and local search (mutation) in order to find a good approximation to an 
optimization problem. Figure 2 presents a generic scheme of such an algorithm. 
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Figure 2 – Generic Genetic Algorithm 

 
This method is one of the most popular meta-heuristic used in EAM optimization problems [8]. It has 
been implemented in IPOP software to solve investments planning problems with budget constraint 
for EDF (for a complete description of the specific algorithm and a discussion on parameters tuning, 
one should read [11]). The goal function used in IPOP is a mean indicator whose evaluation is fast 
enough to be efficiently computed with regular Genetic Algorithms. 
 
3.3. Genetic Algorithm for Simulation Optimization (GASO) 
 
When the goal function is expensive to compute, which is often the case for simulation evaluation, it is 
very difficult to use GA as described previously. As a matter of fact, for complex models, industrial 
assets simulation of one given strategy may take up to several minutes or hours to compute converged 
estimators. On the other hand, GA may need the evaluations of several thousands of different 
strategies, leading to calculations that would last days or months. Even if it does not seem impractical, 
and that calculations time could be shortened using supercomputers, it is not a workable method as 
this kind of calculations needs to be assessed daily by system engineers or business planners, often 
with very short delays. 
The main idea of the method described in this paper is to improve the convergence of the simulations 
throughout the optimization process. At the initialization step, all solutions, chosen randomly, are 
evaluated with a small number of replications N then offspring are created using usual cross-over and 
mutation operators except that, when it comes to evaluating the offsprings, the simulation is ran in two 
different ways: 
 

1. If the new solution already exists: M replications (with M<N) are added to the existing 
solution and the number of offsprings is not incremented 

2. If the new solution is not present in the population: it is initialized with N replications and 
considered as an offspring. 

 
When the number of offsprings reaches the limit required to update the population, a (λ+µ) evolution 
strategy is applied keeping the best solutions of both the original population and the offsprings, and N 
replications are added to all solutions. 
To the regular termination criteria of a Genetic Algorithm (maximum number of generations reached 
or no improvement of the best solution after X generations) are added criteria on the simulation 
convergence, such as a maximal width of confidence intervals, non overlapping intervals for the best 
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solutions or reaching a maximal total number of replications (resource-limited computing). Figure 3 
gives a simple view of such a Genetic Algorithm for Simulation Optimization (GASO). 
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Figure 3 – Genetic Algorithm for Simulation Optimization (GASO) 

 
Three specificities of this method, compared with regular GA, should be addressed. 
 

• Parameters tuning: it is a well-known limitation of Genetic Algorithms that their efficiency is 
highly dependent on the different parameters like the size of the population or the mutation 
rate. No simple rule actually exists to evaluate these parameters according to the problem 
characteristics, so the right tuning of parameters often depends on the skills of the analyst. 
Adding two more parameters corresponding to the numbers of replications M and N makes the 
tuning more difficult. 

• Goal function: in this method the fitness of a solution will change throughout the optimization 
process, as it is an estimator depending on the growing sample of replications. A solution then 
needs to be associated with more than one single piece of data per objective, the number of 
values needed will depend on the type of statistic. For a statistic like a probabilistic moment 
two values are sufficient as the couple (empirical value, number of replications) contains all 
the information needed to update the estimator when replications are added. On the opposite, 
using a quantile for objective is more complicated and it seems necessary to store the results 
of all replications, leading to memory issues. 

• Confidence interval: as the value of a solution is estimated, solutions may be compared taking 
into account the accuracy of the estimators. Depending on the type of statistic the confidence 
interval may be more or less easily calculated for a given solution and updated when new 
replications are added. If the goal function is the mean value for instance, the solution in the 
population will need to be associated with the empirical standard-deviation so that an 
approximation of the confidence interval may be computed according to the central limit 
theorem. Once a confidence interval is available and easily updatable for the solutions it may 
be used at two different steps of the GA: 

1. Selection of solutions candidates to cross-over: whatever the selection method is, as 
long as it is based on a ranking of the population (that is to say all usual selection 
methods except the random one), a mathematical order should be defined. The 
question then comes whether solutions must be ranked according to the estimator of 
the goal function, regardless of the number of replications, or according to the 
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confidence interval bounds. These two different possibilities will be discussed on a 
test-case in §4. 

2. Termination criterion: for regular GA the termination criterion is usually the fact that 
the best solution has not been improved for several generations. This kind of criterion 
proved to be not sufficient enough in the case of GASO as a solution with a very large 
confidence interval may dominate the population of solutions for many generations. 
This is the reason why the termination criterion for GASO is a double one with the 
best solution not improved for X generations and having a confidence interval width 
lower then Y%. Another possibility would have been that the top Z solutions have 
non-overlapping confidence intervals, but, as it will be discussed in §4.2., this 
criterion is often impractical. 
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Figure 4 – Mean fitness and 
confidence intervals of the 
initial random population 
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Figure 5 – Mean fitness and 
confidence intervals of the 
population after 500 
generations 
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Figure 6 – Mean fitness and 
confidence intervals of the 
population when termination 
criterion is fulfilled 

 
Figure 4 to Figure 6 give an example of the evolution of a GA for a maximization problem. After 500 
generations (Figure 5) the best mean fitness is actually worse than the best mean fitness of the initial 
population (Figure 4), but the average confidence interval width is much smaller. The best solution, at 
this point, does not have the narrowest confidence interval, showing that it is a “young” solution 
present in the population for few generations. When the algorithm terminates the top solutions all have 
narrow confidence intervals. This example also highlights the fact that the best solution may be 
present in the population before being considered optimal, as the red mark, representing the optimal 
solution, is identified as a good one but ranked number four after 500 generations (Figure 5). 
 
 
4. TEST-CASE 
 
4.1.  Test-case description 
 
The test case consists in finding the optimal preventive replacement planning for a repairable 
component. Both preventive and corrective actions are perfect maintenance. The component reliability 
is modeled by a Weibull distribution. All costs are discounted using a discount rate. The parameters of 
the test case are given in Table 2. 
 
 

Parameter Value 
Scale parameter λ 0.05 
Shape parameter β 2.3 
Time horizon 40 years 
Corrective cost 1000 
Preventive cost 100 
Discount Rate 7.5%/year 

Table 2 - Asset parameters 
 



Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii 

As for the optimization problem, it is a cost minimization one with a risk constraint: 
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The replacements schedules being annual ones, the size of the search space is 1240 10.1,12 ≈ .  
 
The test-case aim is to study the impact of both the numbers of replications at each step of the GASO 
and the selection criterion based on the mean values of the different objectives or the upper bound of 
the confidence intervals. 
 
4.2.  GASO 
 
As explained in §3.3, GASO is a regular GA with an iterative enhancement of the simulations 
convergence. For the regular part of the GA, the methods and parameters used for this test case are 
given in Table 3. 
 

Method/Parameter Value 
Population size 20 
Offspring per generation 1 
Selection method Tournament with 

three candidates 
Selection elitism rate 0.9 
Crossover method Uniform 
Crossover rate 0.7 
Mutation method Neighbors swap 
Mutation rate 0.1 
Evolution strategy λ+µ 

Table 3 – GA features 
 
As for the GASO specific features, the aim of the test-case is to study the impact of both the numbers 
of replications and the selection criterion. The impact of the termination criterion was not studied in 
this test case. A limit on the total number of replications is applied to control the computing cost of the 
optimization. 
 

Method/Parameter Value 
Initial number of 
replications (N) 

100/1000/10000 

Enhancement number of 
replications (M) 

10/100/1000 

Selection order • Mean values 
• Upper bound of the 95% confidence 

interval 
Termination criterion Dispersion (width of the confidence interval over 

the mean estimator) of the best solution lower 1% 
AND 

Best solution ranked first for at least 20 
generations 

 
OR 

 
Total number of replications higher than 50.106    

Table 4 – GA features 
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The design of experiment is to run 10 trials for each of the 18 sets of parameters (initial number of 
replications, enhancement number of replications and selection order measures). 
 
4.3.  Proof of optimality and efficiency measure 
 
It is a well-known limitation of GA that the convergence towards a global optimal solution is often 
difficult to prove. For GASO the difficulty is even higher as the fitness is based on an estimator and 
not the real value; if a GASO is run twice, two close solutions may actually be ranked differently if the 
convergence of the simulation is not sufficient. The number of replications needed to achieve, with a 
high confidence, an optimization problem with a flat optimal neighborhood may happen to be too 
important to be feasible. A practical method is to run the algorithm several times and to study the 
frequency of the different best solutions and the dispersion of their estimators. If no solution happens 
to appear as the best one, additional replications should be added to narrow the width of the 
confidence intervals. 
 
Such an analysis have been performed for the test-case. Figure 7 shows the different best solutions of 
all instances of the design of experiment, with the mathematical order used for the selection 
mechanism being the mean value. It represents 90 trials of the algorithm. Not all solutions found are 
shown, but only the ones with a confidence interval width lower than 1% of the mean estimator (some 
of the trials did not converge, the algorithm ending because it reached the maximum number of 
replications awarded to the calculation) and appearing more than once. This leads to eight different 
solutions. If their confidence intervals show some intersections, making impossible to demonstrate the 
dominance of one of the solution, the fact that the first one appears 12 times as the optimal one, the 
second best appearing only 3 times is a good indication that it is a good candidate to optimality. This 
indication is confirmed by the fact that the best (i.e. minimal) estimator value is found for this 
solution. 
 

290

291

292

293

294

295

296

0 1 2 3 4 5 6 7 8 9

C
o

st

Solution

 
Figure 7 – Best solution dispersion for the test-case with their 95% confidence intervals 

 
This solution corresponds to replacements scheduled at years (5, 12, 19, 26, 33). It is then used as the 
reference one (and called optimal solution) to evaluate the efficiency of each set of parameters of the 
design of experiment. This efficiency will be measured by counting the number of trials for which the 
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algorithm finds this solution, and the number of trials for which this solution is present in the top ten 
solutions of the population. 
 
The optimal replacement schedule without risk constraint is (8, 16, 24, 32). It was also obtained using 
a GASO. Table 5 presents the valuation for both solutions with 106 replications. The estimated 
cumulative distribution function is shown in Figure 8: it clearly shows that the optimal constrained 
solution has a higher minimal cost, corresponding to the preventive replacements without any failure 
(five replacements instead of four), leading to a better control of the failure risk and the respect of the 
constraint. 
 

 Replacement 
schedule 

(5, 12, 19, 26, 33) 

Replacement 
schedule 

(8, 16, 24, 32) 
Mean cost 291.9±0.5 284±0.5 
Prob(C>800) 0.0567±0.0001 0.0719±0.0002 

Table 5 – Evaluation of optimal schedules with and without constraint 
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Figure 8 - Cumulative Distribution Function of the cost for both optimal strategies 

 
 
4.4.  Results 
 
Table 6 and Table 7 present the number of successes of the algorithm to converge towards the optimal 
solution, out of ten trials. The first conclusion that can be made is that using the upper bound of the 
confidence interval is not efficient at all, and that it is better not to take into account the convergence 
of the simulations to compare two candidates in the selection step of the GASO. Using the mean value 
of the estimator presents a maximal frequency of success of 40% with N=100 and M=1000. 
Low numbers of replications are not efficient because low convergence tends to create singular values 
of estimators very far from the real values. Such solutions will be at first considered as good 
candidates, dominating the population and expelling other good solutions, until its estimators start to 
converge towards its real value and is, in turn, expelled by a new solution. A detailed analysis of the 
evolution of such a case actually showed a cycle of the solutions, with specific solutions appearing and 
disappearing several times during the optimization. 
As for high numbers of replications, they are not efficient because the maximal total number of 
replications awarded (50.106) is reached before the optimal termination criterion is met. 
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  Initial number of replications  (N) 
  100 1000 10000 
Enhancement number 

of replications 
(M) 

10 0 3 0 
100 4 3 2 

1000 1 1 3 
Table 6 – Efficiency of the algorithm to converge towards the optimal solution with the mean value as the 

mathematical order for selection mechanism 
 
 

  Initial number of replications (N) 
  100 1000 10000 

Enhancement 
number of 

replications 
(M) 

10 0 0 0 
100 0 0 1 

1000 0 0 0 

Table 7 – Efficiency of the algorithm to converge towards the optimal solution with the upper bound of 
the confidence interval as mathematical order for selection mechanism 

 
Even if using the mean value, no matter the number of replications, as a selection indicator is better, it 
still gives mixed results. This can be explained by the fact that the dispersion of 1% considered for the 
termination criterion is not small enough to rank the solutions with no doubt because of overlapping 
confidence intervals, as illustrated in Figure 7. Narrowing the width of confidence intervals for the 
termination criterion would lead to computing durations making the calculation impractical. Another 
way to avoid the non-convergence of the GASO is to terminate the algorithm with the criterion 
defined in §4.2 and then to add replications to all solutions present at the last generation, without 
applying the GA mechanisms (static population), until the confidence intervals lengths drop down to 
0.1%. The efficiency of the algorithm after this post-treatment is given in Table 8 and Table 9. 
 
 
 

  Initial number of replications (N) 
  100 1000 10000 
Enhancement number 

of replications 
(M) 

10 1 6 7 
100 9 10 9 

1000 1 3 4 
Table 8 – Efficiency of the algorithm to converge towards the optimal solution after post treatment with 

the mean value as the mathematical order for selection mechanism 
 
 

  Initial number of replications (N) 
  100 1000 10000 
Enhancement number 

of replications 
(M) 

10 0 1 9 
100 0 1 7 

1000 0 0 0 
Table 9 – Efficiency of the algorithm to converge towards the optimal solution after post treatment with 

the upper bound of the confidence interval as the mathematical order for selection mechanism 
 
These last results confirm that using the upper bound of the confidence interval as an order for the 
selection mechanism is not as effective as using the mean estimator. If M=100 appears to be an 
optimal value, it is not as clear for N with an efficiency between 90% and 100%. 
One of the criteria that could be used to decide between the different values of N would be the total 
number of replications during the GASO as computing duration is often at stake in this kind of 
problem (cumulative number of replications for all solutions simulated throughout all generations of 
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the algorithm). Table 10 shows that choosing N=100 is one third less expensive with very close 
success frequency. 
 

  Initial number of replications (N) 
  100 1000 10000 
Enhancement number 

of replications 
(M) 

10 5756012 21035744 50005685 
100 19190330 30544850 50006930 

1000 23068760 29321300 31433300 
Table 10 – Average total number of replications (using the mean value as the order measure) 

 
This work is just a first step, applying the GASO methodology on a very simple test-case, and it seems 
difficult to edict generic rules based on this unique example, although the following assumptions may 
be stated: 
 

1. The fitness function, used to compare and select solutions in the GA, should take into account 
mean estimators without consideration of their convergence. 

2. Number of replications should be chosen carefully as large values of M and N will lead to a 
very local exploration of the search space because of the replications budget limit applied to 
ensure the tractability of the method. On the opposite, small values of M and N will lead to a 
global search based on inaccurate estimators. 

3. The termination criterion does not have to be too strict on simulations convergence as it can be 
improved after the GA has terminated. 

 
It would be interesting to apply the GASO to a set of various problems in order to try to identify a 
relation between the parameters of the algorithm and some specific data, such as the order of 
magnitude of a random solution, its dispersion, the size of the space-search... 
 
5. CONCLUSION 
 
This paper presented a methodology to couple GA with Monte-Carlo simulation function when 
addressing Simulation Optimization issues in the field of engineering asset management. The test-case 
presented here proved the GASO to be an effective answer to realistic issues a system engineer or a 
business manager could face. If the method may be easily implemented in any EAM tool the success 
of a study will depend on the user skill to configure the calculations. As a matter of fact, even if the 
studied example showed some interesting results, such as the existence of an optimal number of 
replications for each simulation, or the efficiency of a post treatment of the best solutions to narrow 
the confidence intervals and then to finalize the optimization, it is not sufficient to edict generic rules, 
even empiric ones, to tune the parameters of a GASO. 
The next step would be to apply this algorithm to different and more complex cases to confirm its 
efficiency and try to build a rule linking the parameters to the characteristics of the problem. 
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