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Abstract: This paper present a general method coujplg genetic algorithms and Monte-Carlo
simulation to address simulation optimization issug in the field of engineering asset
management. After a description of the method, pamaeters tuning issues are analyzed through
a test-case.
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1. INTRODUCTION

Optimizing the maintenance schedule for a compooeiat system, a classic problem in Engineering
Asset Management (EAM), faces two major challengé= first one is to build a realistic model that
can be used to assess the efficiency of a giventarance strategy. The second one is to handle the
important combinatory of the optimization problemcg, on a year based maintenance, the solution
space size is growing exponentially with the opegaiime remaining.

In this paper we present a general framework fl-informed constrained maintenance scheduling
optimization coupling a Genetic Algorithm (GA) andonte-Carlo simulation algorithm. The
performance and the parameters tuning of this @erfdgorithm for Simulation Optimization
(GASO) will be discussed based on a test caseilftinthe replacement dates minimizing the global
owning cost of a single component with a Value igkRonstraint) with a special focus on the fithess
function for which two alternatives have been stddi

2. SIMULATION OPTIMIZATION REVIEW

Taken separately, efficiency assessment issue ss&l management strategy optimization issue have
been addressed successfully and are widely dedaribe literature. Reliability and, more recently
industrial asset management models have been gedklor decades to assess the efficiency of a
maintenance strategy, on the technical point ok\{ieliability, availability or safety indicatorgr on

the financial one (discounted cash-flows, Net Rreséalue...). Many mathematical models and
associated tools are used (Markov graphs, Pieceldgerministic Markov Process, Petri Net...).
These models are solved thanks to numerical céilenlgechniques or Monte-Carlo Simulation if the
underlying model is more complex.

On the other hand, finding the optimal schedulenf@intaining a component is a hard optimization
problem, as it is often impossible to write dowe tjoal function as an easily optimizable function
(linear, convex...), whether because the asset toemodthe indicators to be optimized are too
complex. Exact methods are then not usable (cuplage methods for linear problems) or not
efficient enough (branch and bound). An efficieligraative is to use approximation methods such as
metaheuristics, among which one of the most popsiitire genetic algorithm.

Solving optimization problem for goal function assed through simulation is a research area known
as “Simulation Optimization” and it has been insiagly studied in the past fifteen years. A recent
survey ([1]) identifies metaheuristics as the bewmthods for global integer optimization. The
difficulty is then to associate Monte-Carlo simidat and Genetic Algorithm, as a matter of fact
Monte-Carlo simulations need a large number oficafibns to narrow the results confidence interval
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and Genetic Algorithms need to evaluate a largebmrnof solutions to converge toward a global
optimum, a simplistic coupling could lead to ca#tidn durations too long to be tractable. Examples
of coupling such algorithms have been describedages where simulation durations were not an
issue ([2]). In other cases ([3]), the confidenctenval is taken into account to penalize the goal
function but the convergence of solutions is noproved throughout the process. A sequential
method, named OCBA, improving the convergence obtysolutions” throughout optimization, has

been described in [4] and coupled to evolutiondgpr&éhms for manufacturing or design problems

([5D-

In the field of maintenance and asset managentert have been very few uses of these methods but
it would respond to a growing concern of decisioakers who want to take multi-objectives and
multi-constraints decisions for complex assets fhen impossible to avoid using simulation toeass

the objectives or to check constraints (especia@krinformed ones). One of the few examples found
([6]) does not seem to have been widely used sipeghaps because the goal function (expected
availability of a redundant system) could be appnaxed with a Markov process numerically
calculable.

3. METHOD
3.1. Asset Management Simulation Model

A generic asset management model has been develoipéd EDF R&D to evaluate the profitability
of an investments strategy for large assets of p@lamts. This model relies on a parallel evaluatio
of two strategies, the reference one and a nevif@i@ecision makers want to assess, replicatdd wit
a Monte-Carlo simulation tool. The only source ntertainty taken into account in this model are the
failure dates of the components, which is an ateatmcertainty as opposed to epistemic uncer&snti
such as maintenance costs or spare parts supplysdehich aren’'t modeled in EDF tool but analyzed
through sensitivity analysis. The generic method ®ol have been discussed in [7].

For the purpose of this paper, the asset managamzuhl has been simplified to a single repairable
component with a non constant failure rate. Repaiesassumed instantaneous, unavailability of the
component after failure being taken into accounthia sole total costs. Preventive replacement,
assumed to be an As Good As New (AGAN) mainten¢emsie may be performed according to a date-
based maintenance program. Figure 1 shows the ¢paghich a model, for which:

* Ais the failure rate of the component dependingage

* dis the dirac function

» Ttis the deterministic law modeling preventive replaents

* tisthetime

* aisthe age of the component

* CF is the cumulated cash-flows

* Ccwmis the corrective maintenance cost (including sert costs, forced outage costs...)
* Cpnmis the preventive maintenance cost

* O is the discount rate
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Figure 1 - Pseudo-Markov graph with transitions imgacts on cash-flows for a single repairable
component

The Monte-Carlo simulation used to estimate théalodistic distribution of the cumulated cash flows
is described in Table 1.

while r<NReplications
Total Cash_Flow(r)=0;
t_failure=reliability_law(rand);
t_preventive_replacement=[t_pr_1;t pr_2;...];
while min(t_failure ;t_preventive_replacement)<T_inal
t= min(t_failure ;t_preventive_replacement) ;
if t=t_failure
Total_Cash_Flow(r)+=corrective_cost*exp(-alpha)t
t_failure=t+ reliability_law(rand);

else
Total_Cash_Flow(r)+=preventive_cost*exp(-alpha)t
t_failure=t+reliability_law(rand);
delete(t,t_preventive_replacement);
end,
end,
r+=1;

end;

Table 1 - Pseudo-code for the single repairable cquonent Monte-Carlo simulation
3.2. Genetic Algorithm

The Genetic Algorithm (GA) was introduced by Hotiaim [9] and popularized by Goldberg [10]; it is
a evolutionist meta-heuristic widely used for conatorial optimization. It is based on an analogy to
Darwin’s evolution theory on natural selection isigithat, within a population, organisms with atig
fitness are more likely to reproduce and to cre#prings with higher fitness.

Genetic algorithms include different operators mixglobal search (selection of best solutions,szros
over to build new ones) and local search (mutationprder to find a good approximation to an
optimization problem. Figure 2 presents a genafliemse of such an algorithm.
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Figure 2 — Generic Genetic Algorithm

This method is one of the most popular meta-heciusted in EAM optimization problems [8]. It has
been implemented in IPOP software to solve investsplanning problems with budget constraint
for EDF (for a complete description of the specdlgorithm and a discussion on parameters tuning,
one should read [11]). The goal function used I@PPs a mean indicator whose evaluation is fast
enough to be efficiently computed with regular Genglgorithms.

3.3. Genetic Algorithm for Simulation Optimization (GASO)

When the goal function is expensive to computectviig often the case for simulation evaluatiors it
very difficult to use GA as described previoushs A matter of fact, for complex models, industrial
assets simulation of one given strategy may tak® everal minutes or hours to compute converged
estimators. On the other hand, GA may need theuatiahs of several thousands of different
strategies, leading to calculations that would dists or months. Even if it does not seem impralgtic
and that calculations time could be shortened usupgercomputers, it is not a workable method as
this kind of calculations needs to be assesseg bgilsystem engineers or business planners, often
with very short delays.

The main idea of the method described in this paptr improve the convergence of the simulations
throughout the optimization process. At the inidafion step, all solutions, chosen randomly, are
evaluated with a small number of replications Nntéspring are created using usual cross-over and
mutation operators except that, when it comes #uesing the offsprings, the simulation is ranwo t
different ways:

1. If the new solution already exists: M replicatiofsith M<N) are added to the existing
solution and the number of offsprings is not inceated

2. If the new solution is not present in the populatid is initialized with N replications and
considered as an offspring.

When the number of offsprings reaches the limitneml to update the population, Je+{1) evolution
strategy is applied keeping the best solutionsodt the original population and the offsprings, &hd
replications are added to all solutions.

To the regular termination criteria of a Genetigaxthm (maximum number of generations reached
or no improvement of the best solution after X gatiens) are added criteria on the simulation
convergence, such as a maximal width of confidemegvals, non overlapping intervals for the best
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solutions or reaching a maximal total number oficagons (resource-limited computindgjigure 3
gives a simple view of such a Genetic Algorithm $mulation Optimization (GASO).
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Figure 3 — Genetic Algorithm for Simulation Optimization (GASO)
Three specificities of this method, compared withular GA, should be addressed.

» Parameters tuning: it is a well-known limitation @énetic Algorithms that their efficiency is
highly dependent on the different parameters liie size of the population or the mutation
rate. No simple rule actually exists to evaluates¢h parameters according to the problem
characteristics, so the right tuning of parametdtsn depends on the skills of the analyst.
Adding two more parameters corresponding to thebmraof replications M and N makes the
tuning more difficult.

» Goal function: in this method the fitness of a $iolu will change throughout the optimization
process, as it is an estimator depending on theiggossample of replications. A solution then
needs to be associated with more than one singt mif data per objective, the number of
values needed will depend on the type of statiftir. a statistic like a probabilistic moment
two values are sufficient as the couple (empinadle, number of replications) contains all
the information needed to update the estimator whplications are added. On the opposite,
using a quantile for objective is more complicated! it seems necessary to store the results
of all replications, leading to memory issues.

* Confidence interval: as the value of a solutiorsimated, solutions may be compared taking
into account the accuracy of the estimators. Dejpgnoh the type of statistic the confidence
interval may be more or less easily calculateddagiven solution and updated when new
replications are added. If the goal function is thean value for instance, the solution in the
population will need to be associated with the eiogli standard-deviation so that an
approximation of the confidence interval may be pated according to the central limit
theorem. Once a confidence interval is availabk easily updatable for the solutions it may
be used at two different steps of the GA:

1. Selection of solutions candidates to cross-pwératever the selection method is, as
long as it is based on a ranking of the populafitvat is to say all usual selection
methods except the random one), a mathematicalr wleuld be defined. The
question then comes whether solutions must be daakeording to the estimator of
the goal function, regardless of the number of icapbns, or according to the
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confidence interval bounds. These two differentspmbties will be discussed on a
test-case in 84.

2. Termination criterionfor regular GA the termination criterion is udyahe fact that
the best solution has not been improved for sexgaagrations. This kind of criterion
proved to be not sufficient enough in the case ASQ as a solution with a very large
confidence interval may dominate the populatiorsolutions for many generations.
This is the reason why the termination criterion ®ASO is a double one with the
best solution not improved for X generaticargd having a confidence interval width
lower then Y%. Another possibility would have bed#at the top Z solutions have
non-overlapping confidence intervals, but, as itl we discussed in 84.2., this
criterion is often impractical.
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Figure 4 — Mean fitness ang Figure 5 — Mean fitness and Figure 6 — Mean fitness and
confidence intervals of the| confidence intervals of the| confidence intervals of the
initial random population population after 500 | population when termination
generations criterion is fulfilled

Figure 4 to Figure 6 give an example of the evolution of a GA for a imazation problem. After 500
generationsKigure 5) the best mean fitness is actually worse tharb#st mean fitness of the initial
population Figure 4), but the average confidence interval width is msimaller. The best solution, at
this point, does not have the narrowest confidenterval, showing that it is a “young” solution
present in the population for few generations. Wihenalgorithm terminates the top solutions alldav
narrow confidence intervals. This example also kgpls the fact that the best solution may be
present in the population before being considergdnal, as the red mark, representing the optimal
solution, is identified as a good one but rankeahimer four after 500 generatiorfsiqure 5).

4. TEST-CASE
4.1. Test-case description

The test case consists in finding the optimal pméve replacement planning for a repairable

component. Both preventive and corrective actioegparfect maintenance. The component reliability
is modeled by a Weibull distribution. All costs aliecounted using a discount rate. The parameters o
the test case are given in Table 2.

Parametel Value
Scale parameter 0.05
Shape parametr 2.3

Time horizon 40 years
Corrective cost 1000
Preventive cost 100
Discount Rate 7.5%/year

Table 2 - Asset parameters
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As for the optimization problem, it is a cost mirgation one with a risk constraint:
min Cost(x) O
subject toProb(Cost(x) = 800) < 006

The replacements schedules being annual oneszéhefshe search space2§° = 11.10°,

The test-case aim is to study the impact of boghnilhmbers of replications at each step of the GASO
and the selection criterion based on the mean salfi¢he different objectives or the upper bound of
the confidence intervals.

4.2. GASO
As explained in 83.3, GASO is a regular GA with iggrative enhancement of the simulations

convergence. For the regular part of the GA, théhows and parameters used for this test case are
given in Table 3.

Method/Parametel Value

Population size 20

Offspring per generation 1

Selection method Tournament with
three candidates

Selection elitism rate 0.9

Crossover method Uniform

Crossover rate 0.7

Mutation method Neighbors swap

Mutation rate 0.1

Evolution strategy A+

Table 3 — GA features

As for the GASO specific features, the aim of thst-tase is to study the impact of both the numbers
of replications and the selection criterion. Theatt of the termination criterion was not studied i
this test case. A limit on the total number of iegtlons is applied to control the computing cdshe
optimization.

replications (M)

Method/Parametel Value

Initial number of 100/1000/10000
replications (N)

Enhancement number of | 10/100/1000

Selection order

« Mean values

» Upper bound of the 95% confidence
interval

Termination criterion

Dispersior (width of the confidence interval ovel
the mean estimator) of the best solution lower 19
AND
Best solution ranked first for at least 20
generations

OR

Total number of replications higher than 50.16
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The design of experiment is to run 10 trials focheaf the 18 sets of parameters (initial number of
replications, enhancement number of replicatiortssatection order measures).

4.3. Proof of optimality and efficiency measure

It is a well-known limitation of GA that the conygance towards a global optimal solution is often
difficult to prove. For GASO the difficulty is evdmgher as the fithess is based on an estimator and
not the real value; if a GASO is run twice, twosgasolutions may actually be ranked differentihé
convergence of the simulation is not sufficienteTiumber of replications needed to achieve, with a
high confidence, an optimization problem with & figtimal neighborhood may happen to be too
important to be feasible. A practical method isrdo the algorithm several times and to study the
frequency of the different best solutions and tispersion of their estimators. If no solution hapgpe

to appear as the best one, additional replicatisimsuld be added to narrow the width of the
confidence intervals.

Such an analysis have been performed for the &sstfeigure 7 shows the different best solutions of
all instances of the design of experiment, with thathematical order used for the selection
mechanism being the mean value. It representsi&® of the algorithm. Not all solutions found are
shown, but only the ones with a confidence intewidkth lower than 1% of the mean estimator (some
of the trials did not converge, the algorithm eigdinecause it reached the maximum number of
replications awarded to the calculation) and agpgamore than once. This leads to eight different
solutions. If their confidence intervals show santersections, making impossible to demonstrate the
dominance of one of the solution, the fact thatftret one appears 12 times as the optimal one, the
second best appearing only 3 times is a good ihdicghat it is a good candidate to optimality. §hi
indication is confirmed by the fact that the best.(minimal) estimator value is found for this
solution.
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Figure 7 — Best solution dispersion for the test-ca with their 95% confidence intervals
This solution corresponds to replacements schedtlgdars (5, 12, 19, 26, 33). It is then usedas t

reference one (and called optimal solution) to watd the efficiency of each set of parameters ef th
design of experiment. This efficiency will be megsliby counting the number of trials for which the
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algorithm finds this solution, and the number @l$ for which this solution is present in the tep
solutions of the population.

The optimal replacement schedule without risk aamst is (8, 16, 24, 32). It was also obtained gsin
a GASO.Table 5 presents the valuation for both solutions witlf i€plications. The estimated
cumulative distribution function is shown in Figu8eit clearly shows that the optimal constrained
solution has a higher minimal cost, correspondinthe preventive replacements without any failure
(five replacements instead of four), leading taettdy control of the failure risk and the respddhe
constraint.

Replacement Replacement
schedule schedule
(5,12,19, 26, 33) (8, 16, 24, 32)
Mean cost 291.9+0.5 284+0.5
Prob(C>800) 0.0567+0.0001 0.0719+0.0002

Table 5 — Evaluation of optimal schedules with anavithout constraint

Optimal solution without constraint |—.
Optimal solution with constraint

o
N
=]
o
I
St --
o
o
[ —
S
@
S
S
[
1<)
S
o
[
)
SF
S
[
N
S
S
[
o
gk
S

Figure 8 - Cumulative Distribution Function of the cost for both optimal strategies

4.4. Results

Table 6 and Table 7 present the number of succe$sles algorithm to converge towards the optimal
solution, out of ten trials. The first conclusidrat can be made is that using the upper boundeof th
confidence interval is not efficient at all, andtlit is better not to take into account the cogeace

of the simulations to compare two candidates instflection step of the GASO. Using the mean value
of the estimator presents a maximal frequency oféasss of 40% with N=100 and M=1000.

Low numbers of replications are not efficient bessmiow convergence tends to create singular values
of estimators very far from the real values. Suolut®ns will be at first considered as good
candidates, dominating the population and expeliitiger good solutions, until its estimators start t
converge towards its real value and is, in turpe#igd by a new solution. A detailed analysis & th
evolution of such a case actually showed a cyckh@&olutions, with specific solutions appearingd a
disappearing several times during the optimization.

As for high numbers of replications, they are nfficient because the maximal total number of
replications awarded (50.90s reached before the optimal termination criteris met.
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Initial number of replications (N)
100 1000 10000
Enhancement number 10 0 3 0
of replications 100 4 3 2
(M) 1000 1 1 3

Table 6 — Efficiency of the algorithm to convergedwards the optimal solution with the mean value athe
mathematical order for selection mechanism

Initial number of replications (N)
100 1000 10000
Enhancement 10 0 0 0
number of 100 0 0 1
replications 1000 0 0 0
(M)

Table 7 — Efficiency of the algorithm to convergeawards the optimal solution with the upper bound of
the confidence interval as mathematical order foralection mechanism

Even if using the mean value, no matter the nurobegplications, as a selection indicator is befter
still gives mixed results. This can be explainedhsyfact that the dispersion of 1% consideredHer
termination criterion is not small enough to rahk solutions with no doubt because of overlapping
confidence intervals, as illustrated Fiigure 7. Narrowing the width of confidence intervals foiet
termination criterion would lead to computing diovas making the calculation impractical. Another
way to avoid the non-convergence of the GASO idetoninate the algorithm with the criterion
defined in 84.2 and then to add replications tosalutions present at the last generation, without
applying the GA mechanisms (static population)jluhe confidence intervals lengths drop down to
0.1%. The efficiency of the algorithm after thisspéreatment is given in Table 8 and Table 9.

Initial number of replications (N)
100 1000 10000
Enhancement number 10 1 6 7
of replications 100 9 10 9
(M) 1000 1 3 4

Table 8 — Efficiency of the algorithm to convergeawards the optimal solution after post treatment wth
the mean value as the mathematical order for seleéoh mechanism

Initial number of replications (N)
100 1000 10000
Enhancement number 10 0 1 9
of replications 100 0 1 7
(M) 1000 0 0 0]

Table 9 — Efficiency of the algorithm to convergeawards the optimal solution after post treatment wth
the upper bound of the confidence interval as the athematical order for selection mechanism

These last results confirm that using the uppenboaf the confidence interval as an order for the
selection mechanism is not as effective as usiegntiean estimator. If M=100 appears to be an
optimal value, it is not as clear for N with aniefncy between 90% and 100%.

One of the criteria that could be used to decidevéen the different values of N would be the total
number of replications during the GASO as computilugation is often at stake in this kind of
problem (cumulative number of replications for @dllutions simulated throughout all generations of
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the algorithm). Table 10 shows that choosing N=K0®@ne third less expensive with very close
success frequency.

Initial number of replications (N)
100 1000 10000
Enhancement number 10 5756012 21035744 50005685
of replications 100 19190330 30544850 50006930
(M) 1000 23068760 29321300 31433300

Table 10 — Average total number of replications (usg the mean value as the order measure)

This work is just a first step, applying the GAS@thodology on a very simple test-case, and it seems
difficult to edict generic rules based on this wagxample, although the following assumptions may
be stated:

1. The fitness function, used to compare and seldgtigos in the GA, should take into account
mean estimators without consideration of their esgence.

2. Number of replications should be chosen carefudlyaage values of M and N will lead to a
very local exploration of the search space becafisee replications budget limit applied to
ensure the tractability of the method. On the oftepsmall values of M and N will lead to a
global search based on inaccurate estimators.

3. The termination criterion does not have to be togton simulations convergence as it can be
improved after the GA has terminated.

It would be interesting to apply the GASO to a @kvarious problems in order to try to identify a
relation between the parameters of the algorithrd some specific data, such as the order of
magnitude of a random solution, its dispersion silae of the space-search...

5. CONCLUSION

This paper presented a methodology to couple GA wWibnte-Carlo simulation function when
addressing Simulation Optimization issues in te&lfof engineering asset management. The test-case
presented here proved the GASO to be an effechgever to realistic issues a system engineer or a
business manager could face. If the method mayabiyemplemented in any EAM tool the success
of a study will depend on the user skill to configuhe calculations. As a matter of fact, everhd t
studied example showed some interesting resulth sis the existence of an optimal number of
replications for each simulation, or the efficiermya post treatment of the best solutions to marro
the confidence intervals and then to finalize th&mization, it is not sufficient to edict generigles,
even empiric ones, to tune the parameters of a GASO

The next step would be to apply this algorithm itibedent and more complex cases to confirm its
efficiency and try to build a rule linking the paraters to the characteristics of the problem.
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