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Overview
• Probabilistic risk assessment (PRA) has traditionally 

focused on events occurring during power operation

– Internal events (transient, steam generator tube break, loss of 
coolant accident (LOCA))

– Internal fire and flood

– External events (earthquake, high winds, aircraft impact)
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• Decay heat means risk of core damage is still present 
after shutdown

– Core damage at Three Mile Island (1979) and Fukushima (2011)

• Increased activity may cause initiating events

– Station blackout at Vogtle 1 (1990)



Agenda
• NuScale design overview

• NuScale refueling process overview

– Plant operating states (POS)

• Developing low power/shutdown (LP/SD) PRA 

– Initiating event frequency

– Accident sequences
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– Accident sequences

– Crane failure probability



• Factory built nuclear steam supply system:

– Primary system and containment is prefabricated 
and shipped by rail, truck or barge 

• Integral design with natural circulation cooling 

– Eliminates major accident scenarios

– Eliminates many pumps, pipes, valves

NuScale Power Module
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• Immersed in large ultimate heat sink

– Simplifies and enhances safety case

• Built on proven technology

– Innovation is in the design and engineering

• Constructed below grade

– Enhances security and safety 



Passive Safety 
• All safety-related components are fail-safe valves that 

actuate cooling systems on loss of power

• Safety systems rely on passive processes of natural 
circulation and heat conduction 

• Triple Crown for Nuclear Plant Safety™

– The NuScale plant is able to safely shut down and self-cool, 
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– The NuScale plant is able to safely shut down and self-cool, 
indefinitely, with:

• No operator action

• No AC or DC power

• No additional water



Decay Heat Removal System

• Two passive, independent single-failure-
proof trains

• Closed loop system

• Two-phase natural circulation operation

• DHRS heat exchangers mounted 
directly on exterior of containment 
vessel--normally full of water 

DHR
Actuation 
Valve

FWIV
MSIVs

FWIV
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vessel--normally full of water 

• Supplies secondary side coolant 
inventory

• Natural circulation of primary coolant is 
maintained

• Pool provides a >3 day cooling supply 
for decay heat removal

DHR Heat 
Exchanger



Emergency Core Cooling System
• Provides a means of removing core decay 

heat and limits containment pressure by:

– Steam condensation

– Convective heat transfer

– Heat conduction

– Sump recirculation

• Reactor vessel steam is vented through 
the Reactor Vent Valves (flow limiter)

Reactor Building 
Pool

Containment

Reactor Vent 
Valve

Reactor Vent 
Valve
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the Reactor Vent Valves (flow limiter)

• Steam condenses on containment

• Condensate collects in lower containment 
region 

• Reactor Recirculation Valves open to 
provide recirculation path through the core

• Provides >30 day cooling followed by 
unlimited period of air cooling

Reactor 
Recirculation 
Valve

Reactor 
Recirculation 
Valve



Reactor Pool
• Below-grade concrete pool with stainless steel liner 

provides seismic damping and radiation shielding during 
normal operation

• Ultimate heat sink for safety systems

– DHR system heat exchangers

– Condensation and conduction through containment vessel when 
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– Condensation and conduction through containment vessel when 
ECC valves are open

• Inventory provides water cooling of containment for 30 
days, air cooling indefinitely

• Spent fuel pool provides at least 30 days of passive 
cooling of fuel assemblies



Reactor Building
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Main Control Room

Spent Fuel Storage

NuScale Power Modules

Reactor Pool



Refueling Procedure
• Module shutdown and initial cooling (POS1)

– Cooling with normal secondary cooling (turbine bypass)

– Begin containment flood

• Cooling through containment (POS2)

– Open vent and recirculation valves 

– Cooling with heat conduction through containment to reactor pool
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– Cooling with heat conduction through containment to reactor pool

– Module stable in this state indefinitely 

• Disconnection (POS3)

– Disconnect piping and power 

– Connect to reactor building crane



Refueling Procedure
• Transport (POS4)

– Transport to refueling area with reactor building crane

• Disassembly (POS5)

– Open containment flange and reactor vessel flange

– Remove upper vessels and reactor vessel internals

• Refueling and core shuffle (POS6)

TM
11 Non-Proprietary

© 2014 NuScale Power, LLC

• Refueling and core shuffle (POS6)

• Reassembly (POS5), Transport (POS4), Reconnection 
(POS3)

• Restart (POS7)

Total refueling outage time: ~11 days



Refueling Advantages
NuScale has:

• the ability to operate 11 modules while any module is 
being refueled

• permanent refueling personnel, reducing contract staff

• NO draindown events

• NO mid-loop operation
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• NO mid-loop operation

• NO active cooling after containment is flooded



Refueling Challenges
• Refueling takes place under ~60 feet of water

• No control over temperature and pressure in reactor after 
disconnection

• Transport of module while fueled
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Initiating Events for LP/SD PRA
• For initiating events from Level 1 PRA that apply to one or 

more POSs, the frequency is adjusted to account for the 
duration of the POS.

• Initiating events involving systems not in service are 
screened

– Example: when cooling through containment (POS2), secondary 
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cooling systems are isolated. Initiating events including loss of 
feedwater, main steam line break, and steam generator tube 
breaks are not included for this POS.



Initiating Event Frequency

Where

• fLP low power frequency, per calendar year

• f full power frequency, per reactor critical year

8760CF POS
FP

LP

d
f

f
f ×=
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• fFP full power frequency, per reactor critical year

• CF module capacity factor, dimensionless*

• fPOS frequency of POS, per calendar year

• d = duration of POS, hours

* CF used as 0.844, industry average from 2012



Initiating Event Frequency
Initiating Event POS Duration 

(hours)
fFP

(per rcry)*
fPOS

(per year)
fLP

(per year)
LOCA outside 
containment

1 10 3.67E-4 2.5 1.24E-6

Loss of secondary cooling 
1 10 1.28E-1 2.5 4.33E-4

Loss of offsite power 1 10 6.14E-2 2.5 2.08E-4
LOCA outside 
containment

2 15 3.67E-4 1.5 1.12E-6

Loss of secondary cooling 
2 15 1.28E-1 1.5 N/A
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* From generic operating experience data (NuScale values proprietary)

2 15 1.28E-1 1.5 N/A

Loss of offsite power 2 15 6.14E-2 1.5 N/A
LOCA outside 
containment

7 20 3.67E-4 2.5 2.48E-6

Loss of secondary cooling 
7 20 1.28E-1 2.5 8.65E-4

Loss of offsite power 7 20 6.14E-2 2.5 4.15E-4



Reactor building crane
• Single-failure-proof (SFP) crane, as required for all critical 

load lifts

• Meets or exceeds all nuclear regulations 

– 10CFR50 Appendix B, NQA-1, NUREG-0554 and NUREG-0612, 
NOG

• Dedicated lifting device to interface with module lifting 
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• Dedicated lifting device to interface with module lifting 
points

– No temporary or moveable rigging

• Success criteria and accident sequences for a crane 
failure event are being developed



Crane Failure Probability
• Operating experience data for very heavy loads (greater 

than 30 tons) in NUREG-1774 

– 9 failure events (load slip or load drop) in estimated 54,000 lifts

– Not all events are directly relevant: non-SFP crane, non-critical 

liftper 1067.1
000,54

9 4−×==λ
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– Not all events are directly relevant: non-SFP crane, non-critical 
load

• Weighting factors adjust failure events for relevance

– Identify consequence, cause, and crane for each failure to take 
credit for SFP and dedicated rigging device

– Product of three factors is percent relevance for each event



Crane Failure Probability
Consequence Factor Cause Factor Crane Factor
Slip 0.5 Human 1.0 SFP 1.0
Drop 1.0 Mechanical 0.1 Non-SFP 0.1

Rigging 0.1

• Most relevant event would be load drop with SFP crane 
caused by human error: 1.0 equivalent failures

• Least relevant is a load slip with non-SFP caused by 
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• Least relevant is a load slip with non-SFP caused by 
rigging or mechanical failure: 0.005 equivalent failures



Crane Failure Probability
Weighting system applied to failure events

Date Plant Consequence Cause Crane Equiv. Failures
11/1985 St. Lucie 1 Slip Mechanical Non-SFP 0.005
4/1990 Fort Calhoun Slip Rigging SFP 0.050
9/1993 Arkansas 1 Slip Human SFP 0.500
12/1997 Byron Slip Human Non-SFP 0.050
10/1999 Comanche Peak Slip Mechanical Non-SFP 0.005
11/1999 Crystal River 3 Slip Rigging SFP 0.050
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11/1999 Crystal River 3 Slip Rigging SFP 0.050
12/1997 Byron Drop Human Non-SFP 0.100
5/2001 San Onofre Drop Rigging Non-SFP 0.010
6/2001 Turkey Point 4 Drop Rigging Non-SFP 0.010

Total 0.780

liftper 1044.1
000,54

780.0 5−×==λ



Crane Failure Uncertainty
• Uncertainty sampling was performed with OpenBUGS

– Assumed lognormal distribution with error factor of 10

Mean
Standard 
Deviation

5% Value Median
95% 
Value

1.437E-5 3.411E-5 5.368E-7 5.383E-6 5.350E-5
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Conclusions
• Internal events are not a major contributor to risk at a 

NuScale plant

– Passive cooling with large quantities of water nearby

• Failure of reactor building crane deserves closer scrutiny

– More detailed and design-specific analysis of NuScale’s crane to 
determine failure probability
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– Deterministic thermal-hydraulic analyses to determine 
consequences of a crane failure



6650 SW Redwood Lane, Suite 210
Portland, OR 97224
503.715.2222
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503.715.2222

1100 NE Circle Blvd., Suite 200
Corvallis , OR 97330
541.360.0500

11333 Woodglen Ave., Suite 205
Rockville, MD 20852
301.770.0472

http://www.nuscalepower.com
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