

PRA Application to Offshore Drilling Critical Systems

Massoud (Mike) Azizi

Principal Engineer/ Technical Fellow Aerojet Rocketdyne Extreme Engineering

- PRA Methodology
- Applications of PRA to nuclear industry
- Applications of PRA to aerospace industry
- How can PRA be applied to oil & gas industry
- Macondo Accident Scenario
- PRA Methodology Comparison
- PRA management
- Conclusions

A systematic and comprehensive methodology to evaluate risks associated with complex engineering and technological systems.

A quantitative evaluation of system safety

- Identification, selection, and screening of initiating events
- Definition and modeling of all scenarios
- Initiating and pivotal events modeling
- Data development and risk quantification
- Uncertainty analysis
- Risk importance ranking for risk reduction and communication

PRA Methodology and Applications

Application of PRA to Nuclear Industry

Three Mile Island Nuclear Station

> The assessment of plant failures leading to <u>core</u> <u>damage</u> and the determination of core damage frequency (CDF).

Initiating Event

The assessment of containment response leading, together with the results of Level 1 analysis, to the determination of <u>release magnitudes and</u> <u>frequencies.</u>

The assessment of <u>off-site consequences</u> leading, together with the results of Level 2 analysis, to estimates of risk to the public.

Event and Fault Tree Analyses

Functional Event Tree Example

Initiating Event	Reactor Trip	Short Term Core Cooling	Long Term Core Cooling	SEQ#	State
IE	RX-TR	ST-CC	LT-CC		

LT-CC = Long Term Core Cooling

SEQ = Sequence

CD = Core Damage

Systemic Event Tree Example

Building the Fault Tree

Space Shuttle Challenger

Nuclear Safety Issues

· Pre-launch/launch issues focus on startup and inadvertent criticality

This document does not contain ITAR or EAR technical information

Nuclear Safety Review and Launch Approval Process

Iterative Safety

Office of

The

President

Office of

Science &

Technology

Policy³

AEROJET / PRA Application to Offshore Drilling Rig Systems

PRA Methodology can Help Identify Potential Accident Scenarios

DEEPWATER ---

BLOWOUT

PREVENTER

SEAFLOOR

5.067 FT.

PIPE

OIL AND GAS

RESERVOIR

18,360 FT

HORIZON

8:0

PIPE

Macondo accident scenario could have been identified using PRA methodology

The blowout preventer is 54 feet tall.

ANNULAR PREVENTERS

Can create a seal around the drill pipe or seal off an open wellbore when there is no pipe.

CONTROL PODS

Receive electrical signals from the rig and direct the movement of hydraulic fluid. Upper portion has electrical parts: the lower portion has hydraulic valves. Only one pod is activated at a time.

BLIND SHEAR RAM

Cuts the drill pipe and completely seals the well.

CASING SHEAR RAM

Cuts drill pipe or casing in an emergency when the rig needs to disconnect from the well quickly.

ACCUMULATORS

Store fluid sent from the rig. During an emergency, pressurized fluid from these canisters can provide force to power the blind shear ram.

PIPE RAMS

Seal off the space between the outside of the drill pipe and the well bore and keep the pipe centered.

TEST RAM

Used to test the rams above it.

AEROJET / Deepwater Horizon Sample Functional Event Tree*

Hydro-carbon leakage through annulus cement barrier	Well Integrity	Well Hydrostatic Control	Well flow Control	Hydro- carbon Release Control	The BOP Emergency Function	SEQ #	State	Logic
Leak (L)	WI (W)	WHSC (H)	WFC (F)	HCRC (R)	BOPEF (B)			

* Based on information provided in the BP Deepwater Horizon Accident Investigation Report, 9/8/10

Comparison of PRA Applications across the Different Industries

AEROJET ROCKETDYNE

PRA Level	Nuclear	Aerospace	Offshore Oil	
1	•Systems analysis •Core Damage Frequency Evaluation •Consequence analysis •Uncertainty analysis	 Space shuttle systems analysis Calculate probability of loss of vehicle Calculate probability of loss of crew Uncertainty analysis LOCV = 1/65 flights 	 Rig systems failure analysis Subsea systems failure analysis Hydrocarbon release frequency evaluation Consequence analysis Uncertainty analysis Loss of Rig = ? 	
2	 Containment analysis Containment failure modeling and probability Uncertainty analysis Probability of release to atmosphere = 1.0E-05/ RY** 	NA	NA	
3	 Radionuclide release modeling Source term calculations Human fatality estimates Environmental damage estimates Uncertainty analysis 	 Nuclear safety analysis for space nuclear power systems (Cassini, MMRTG) Radionuclide release modeling Source term calculations Human fatality estimates Environmental damage estimates Uncertainty analysis 	 Hydrocarbon release modeling Environmental damage estimates Uncertainty analysis Severe release of Hydrocarbons to environment = ? 	
External Events	•Earthquake •Flood •Fire •Wind •Sabotage •Aircraft Impact	•Micrometeorite/ Orbital Debris (MMOD) •Sabotage	•Earthquake •Hurricane •Object/ iceberg/ vessel impact •Sabotage •Aircraft Impact	
CDF = Core Damage frequency LOCV = Loss of Crew and Vehicle *Ref. NUREG/BR-0058, Rev. 4 RY = Reactor Year **Large Early Release Frequency (LERF)				

PRA Management Among Different Industries

PRA Level	Nuclear		Aerospace	Offshore Oil
Regulatory Agencies	•NRC (Commercial) •DOE (Government)		 •NASA (Shuttle Flights, ISS) •Air Force (Unmanned Rocket launches) •DOE (Nuclear payloads) 	 Primary O&G Regulatory Agency= BSEE? EPA US Coast Guard DOT
Industry Representatives	•INPO (EPIX Database)		NA	•API/COS (API 17N)
PRA Management Approach	•Defense in depth •Risk Informed Approach •Living PRA		 Risk Informed Approach NASA SRP Review Presidential Approval on nuclear payloads AF Range Safety Approval (MSPSP) 	 Defense in depth? Risk Informed Approach? Living PRA?
NRC = Nuclear Regulatory Commission DOE = Department of Energy INPO = Institute of Nuclear power Operations EPA = Environmental Protection Agency DOT = Department of Transportation EPIX = Equipment Performance and Information Exchange		ISS = International space Station SRP = Safety Review Panel AF = Air Force MSPSP = Missile Systems Prelaunch Safety Package BSEE = Bureau of Safety and Environmental Enforcement API = American Petroleum Institute COS = Center for Offshore Safety		

- A standard risk management approach such as PRA will be able to help oil and gas industry, especially offshore oil drilling improve safety and reduce hazard risk
- PRA analysis for offshore drilling and production operations (as well as onshore) can benefit from the nuclear and aerospace industries past experience
- Oil and gas regulatory agencies (e.g., BSEE) can identify target frequencies for consequences such as:
 - Loss of rig due to fire/explosion
 - Severe release of hydrocarbons to the environment
- Oil and gas Industry representative agencies such as API can develop failure rate databases that can be used by the entire industry and utilized in the oil rig PRA