The Reliability Effects of Transient-Induced Degradation on the Performance of Large Power Transformers

Brittany L. Guyer - MIT NSE

C. Rick Grantom - CRG, LLC Michael W. Golay - MIT NSE

> PSAM12 Conference Honolulu, HI June 2014

Motivation

► Traditional component reliability models are incomplete.

- Time-dependent degradation is not the only important mode of degradation.
- Event-induced degradation could also affect component performance and thus should be included in reliability models.
- Accurate modeling of aging component reliability improves effectiveness of a nuclear power plant's asset management.

Traditional Component Reliability Model

 Failure frequency is constant, or a function of time-dependent mechanistic degradation (ex. radiation embrittlement, water chemistry)

followed by terminal failure at time t₂

Transient-Induced Degradation Reliability Model

Figure 1 : Reliability diagram indicating the relationship of transient, t_t , and time of failure event, t_{event}

Tranisent increases the random failure frequency

$$\lambda' = \lambda_R + \Delta \lambda_R \tag{1}$$

Seeking an Example for Model Demonstration

- Criteria for Component Selection:
 - High capital cost
 - Long lead-time for replacement
 - Failure leads to unplanned shutdown
 - Failure has occurred prematurely
 - Record of component experiencing strong transients

Seeking an Example for Model Demonstration

- Criteria for Component Selection:
 - High capital cost
 - Long lead-time for replacement
 - Failure leads to unplanned shutdown
 - Failure has occurred prematurely
 - Record of component experiencing strong transients
- Selection: Large Power Transformers

Plant-Specific Data: Fault Evaluation

- Model demonstration requires component-specific event history
- A utility partner was identified who had experienced unanticipated transformer failures
 - ▶ 7 Large power transformers at site
 - ▶ Event-history: 25 years, 17 events affecting transformers
- Impact codes assigned to each transformer for each event

Code	Severity				
0	None				
1	Low				
2	Low/Medium				
3	Medium				
4	Medium/High				
5	High				

Plant-Specific Data: Fault Evaluation Data

Table 1 : Lifetime Impact Codes from Plant Data Set

Transformer							
Name	MT1A	MT1B	UAT1	MT2A	MT2B	UAT2	Spare
Lifetime							
Impact Code	2	20	11	20	26	20	13
Sum							

Plant-Specific Data: Fault Evaluation Data

Figure 2 : Comparison of the Lifetime Severity and Number of Events Experienced by Each Transformer

Plant-Specific Data: *Classification of Internal and External Events*

- Internal Events: Events occurring due to the malfunctioning of components internal to the transformer
- External Events: Events that degrade the transformer, but were initiated by a component external to the transformer

 We want to predict more accurately the occurrence of internal events – these events are most relevant to asset management

Plant-Specific Data: *Comparison of Internal and External Events*

Figure 3 : Comparison of Internal and External Events for Transformers Examined

Strategy for Developing a Physics-of-Failure Predictive Model

- Model goal: Accurately predict transformer downtime
- Worst case scenario: catastrophic failures
 - Model will focus on life-limiting failure modes
- Perform a fragility analysis
 - Identify most life-limiting components
 - Identify most important degradation modes
 - Characterize degradation by fragility factor

Strategy for Developing a Physics-of-Failure Predictive Model

- Development of Fragility Factor
 - Requires relationship between transient-event data and physical models of degradation
 - Requires the definition of a failure limit
- Fragility Factor:

$$F = \frac{\sum_{i=1}^{n} [\% \text{ Component Degradation}]_n}{n}$$
(2)

Percent Degration:

$$P_D = MAX \left[\frac{Degradation}{Degradation \ Limit} \right]_m$$
(3)

Use of the Fragility Factor for Reliability Predictions

- We seek improved asset management strategies through better reliability modeling
- Use the external event data for reliability predictions
 - Event frequencies
 - Characteristic induced degradation
 - Combine with age-related degradation models
- Result: Prediction of reliability(time) better information for decision-making

Summary

- Traditional age-related models of degradation yield incomplete future reliability predictions.
- Event-based, component-specific reliability predictions can provide more accurate reliability predictions.
- We propose development of physics-of-failure based fragility factor to represent state of component degradation.
- Improved component monitoring strategies could be developed from more accurate mechanistic failure modeling.