中国科学院核能安全技术研究所・FDS团队 Institute of Nuclear Energy Safety Technology, CAS · FDS Team

Better Nuclear Energy Technology, Better Lífe! www.fds.org.cn

A New Reliability Allocation Method Based on FTA and AHP for Nuclear Power Plant

Presented by Rongxiang Hu

Contributed by FDS Team

Institute of Nuclear Energy Safety Technology (INEST) Chinese Academy of Sciences

PSAM12 · Honolulu · Jun.-26-2014

Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences (INEST, CAS)

Jointly sponsored by:

- Hefei Institutes of Physical Science, CAS (CASHIPS)
- University of Science and Technology of China (USTC)

Key programs:

- Advanced Fission Reactor Design and R&D (ADS CLEAR)
- Fusion/Hybrid Reactor Design and R&D (ITER/FDS)
- Nuclear Safety Innovation Project for Scientific and Technological Development
- ✤ 10 Divisions

Major Research Areas:

1. Nuclear reactor safety

(reactor design, nuclear detect & experiments, safety analysis, ...)

2. Radiation safety and environmental impact

(radiation protection & shielding, chemistry safety of nuclear energy, ...)

3. Nuclear emergency and public safety

(nuclear safety culture, nuclear accident emergency, nuclear power economics, ...)

The major professional/fundamental research basis for nuclear energy safety technology in China to promote the efficient and safe application of nuclear energy.

~380 members

Contents

- * Background
 - Basic concepts
 - Fault Tree Analysis (FTA)
 - Analytic Hierarchy Process (AHP)
- Proposed Method
 - First step: Top to Minimum Cut-Sets (MCSs)
 - Second Step: MCS to Components
- **Example and Results**
- Discussion and Conclusions
- Related Information

Background

- Reliability is the ability of a system to work correctly during operation
 - Measured by survival probability
- Reliability allocation determines the reliability characteristics of subsystems and components
 - Consider a set of top-level optimization objectives
- Most approaches have limitations in satisfying all optimization objectives
 - Equal reliability allocation method
- Important external factors
 - Impact of environment
 - Severity of the consequences

Basic concepts

Basic concepts

- Initial Reliability
- Reliability Goal

* Simple Example

Initial Reliability

Fault Tree Analysis (FTA)

* Elements

- Top Event (system)
- Gates (subsystems)
- Basic Events BE(components)

Cut set

- A set of basic events
- Cause the system to fail
- Minimum Cut-Set (MCS)
 - Can not exclude any BE in it

Reliability Allocation Based on FTA

- Allocation Criterion
 - Importance of MCS and BE
- Two Steps Allocation
 - **1.** Top event to MCSs
 - 2. MCS to BEs
- Advantages
 - Clear logic relationship
 - Accurate quantitative analysis
 - Mature and fast
- * Defects
 - Many ignored factors

Analytic Hierarchy Process (AHP)

*** Hierarchical Structure**

***** Matrixes of Pairwise Comparison

- Criterion Layer to Objective Layer
- Alternative Layer to Criterion Layer

Reliability Allocation Based on AHP

Allocation Criterion

Facts in Criterion layer

Four Steps:

- **1.** Set up the hierarchical structure;
- 2. Collect pairwise comparisons at each level;
- 3. Compute relative weights at each level;
- 4. Aggregate the relative weights at lower levels to top level;

Advantages

Integrate and quantify subjective views from experts

* Defects

- Need much time for expert judgments
- Neglect available accurate data

Proposed Method

Combine FTA and AHP

Two Steps Allocation

- **1.** Top event to MCSs
- 2. MCS to BEs

Advantages

- Integrate subjective views and objective facts
- Allocation process is efficient

* Defects

Still need time for expert judgments

Second Step: MCS to Components

Example

- Simplified Passive Residual Heat Removal (PRHR) system
- * Elements
 - X₁: A complex subsystem working in harsh environment
 - X₂: A component that causes severe consequence if it fails
 - X₃: A component in bad working environment
 - X₄: A component in good working environment
 - X₅: An ordinary subsystem with low reliability

Results

***** Table 1: Information of Basic Events

BE Name	Initial Reliability	Probabilistic Importance	MCS Included
X ₁	0.98	0.0533	G ₁ , G ₂
X ₂	0.98	0.0007	G_4
X ₃	0.97	0.0489	G ₁ , G ₃
X ₄	0.97	0.0298	G_3, G_4
X ₅	0.75	0.0199	G_2, G_4

Results

- Initial reliability of system: 0.993359
- Reliability goal of system: 0.998000

***** Table 2: Information of Minimum Cut-sets

MCS Name	Reliability Goal	BE Name
G ₁	0.99500	X ₁ ,X ₃
G ₂	0.99910	X ₁ ,X ₅
G ₃	0.99940	X ₃ ,X ₄
G ₄	0.99985	X ₂ ,X ₄ ,X ₅

Results

Table 3: Allocation results

BE Name	Initial Reliability	Reliability goal of FTA	Reliability goal of AHP	Reliability goal of the new method
X ₁	0.98	0.9974	0.9895	0.9919
X ₂	0.98	0.9800	0.9841	0.9885
X ₃	0.97	0.9744	0.9801	0.9837
X ₄	0.97	0.9754	0.9855	0.9834
X ₅	0.75	0.7565	0.8149	0.8158

Reliability goal of X₁ is too high to reach

- Complex subsystem working in harsh environment
- Reliability goal of X₂ does not change
 - Although the consequence of X₂ failure is very severe

Discussion and Conclusions

Same rationality as AHP method

- Consider more factors than FTA
- Even improve the accuracy of results of AHP method based on importance from quantitative analysis of FTA

The allocation process is more efficient than AHP

- Information from FTA and accurate data
- Less time for expert judgments

This method has been implemented in RiskA

Probabilistic Safety & Reliability Analysis Program

RiskA: Probabilistic Safety & Reliability Analysis Program from INEST,CAS

Main Functionalities

- Reliability Data Management
- Failure Mode and Effect Analysis (FMEA)
- Fault Tree Analysis (FTA)
- Event Tree Analysis (ETA)
- Importance Analysis
- Sensitivity Analysis
- Uncertainty Analysis
- Advanced Functionalities
 - Reliability Allocation
 - Fault Diagnosis

Model Recognition and Sharing

FT and ET models can be imported and exported

- FTP
- XML
- RSA
- Format of RiskA

Open Formats

Format of RiskA

Co-modeling

Standalone Version and Online Version Version Control and User Permission

Other Department

Analysis

* Fault tree Analysis

Improved Zero-suppressed Binary Decision Diagram (ZBDD)

Uncertainty Analysis

Optimized Latin hypercube sampling

Parallel Computing

- Simultaneous multiple cases calculation
- Can be deployed on computer cluster

Applications

Computing Engine

The Third Qinshan Nuclear Power Plant Risk Monitor (TQRM)

Probabilistic Safety Analysis

- International Thermonuclear Experimental Reactor (ITER)
- Experimental Advanced Superconducting Tokamak (EAST)

Reliability Analysis

- Accelerator Driven Nuclear Waste Transmuter (ADS)
- FDS series fusion reactors
- Laser Radar System

Contact Information

- Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS)
- * Website
 - www.fds.org.cn
- Software Service
 - software@fds.org.cn
- * We provide
 - Demo Version
 - Standard Version
 - Professional Version

Thanks for Your Attention !

Website: www.fds.org.cn E-mail: contact@fds.org.cn

First step: Top to Minimum Cut-Sets (MCSs)

- Allocate reliability from Top (system) to Minimum Cut-Sets (MCSs)
- The procedure includes:
 - 1. Order all MCSs, and choose *k* low reliability MCSs
 - 2. Use the importance of each MCS as relative weight to calculate the reliability goal of each MCS

Notices

- k low reliability MCSs should cover all basic events
- k should not be too large for efficiency

Second Step: MCS to Components

- Allocate reliability from MCSs to components (basic events)
- The procedure includes:
 - 1. Order all basic events, and choose / low reliability basic events
 - 2. Set up the hierarchical structure, 9 factors
 - **3.** Construct the input matrixes of pairwise comparisons (IMPC)
 - 4. Examine the consistency of the IMPC
 - 5. Compute global relative weights
 - 6. Compute reliability goal of basic events based on global relative weights

Results Optimization

***** Get reliability goal of all basic events

- Intersections of different MCSs
- Reliability goal of one basic event may have different values

Each component should have one value

- The maximum value is selected
 - Guarantee the reliability goal of the system