#### Jakob Christensen<sup>†</sup> 23 June 2014 Internal Flooding according to EPRI guidelines – Detailed Electrical Mapping at **Ringhals Nuclear Power Plant**

#### <sup>†</sup>On behalf of paper authors: Per Nyström, Carl Sunde, and Cilla Andersson.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii, USA

1







## Contents

- EPRI Guidelines for performance of Internal Flooding PSA
- EPRI Task 2: Flood sources/mechanisms and SSCs affected by flooding
- Evaluation of Electrical Dependencies at Ringhals
- Cable Database
- Circuit Breaker and Plant Item Database
- Flooding Database:
  - Superimposing the flooding scenarios
  - Example contents
  - Example application to flooding scenario

Concluding remarks on the detailed electrical mapping approach to flooding analysis



## **EPRI Guidelines for performance of Internal Flooding PSA**

- Guidelines (EPRI Report 1019194) consists of 11 tasks
  - screening.
  - analysis is modelled and quantified as an integral part of the PSA.
  - Task 11: Documentation
- by flooding.

- Tasks 1-4: Qualitative assessment based on identifying flood areas, sources, SSCs and

– Tasks 5-10: Quantitative modelling based on characterizing flood scenarios, initiating events, consequences and mitigation. At the end of the Quantitative modelling, flooding

• Focus of paper is on Task 2: Identification of flood sources/mechanisms and SSCs affected





#### EPRI Task 2: Flood sources/mechanisms and SSCs affected by flooding

- 1. Identify the sources of flood in flood areas; steam hazard is also taken into consideration in the evaluation.
- 2. Identify the plant item affected by flooding (and steam hazard) eg pumps or valves.
  - Dependencies to electrical systems are the main focus of analysis
  - An affected valve/pump may be dependent on
    - electrical power for the actuator/pump motive power, ie electrical power system
    - electrical actuation signals, ie I&C
  - Resulting electrical dependencies fan out to sub-components of the electrical system
    - Cables
    - Junction boxes
    - Protection circuitry
- 3. Electrical Dependencies of sub-components in electrical systems of main components modelled in PSA crucial for capturing consequences of flooding.







## **Evaluation of Electrical Dependencies at Ringhals**

- Detailed information on electrical systems already exists. Information collected in two databases:
  - Cable Database: Lists cables including routing information and connected plant items
  - Circuit Breaker and Plant Item Database: Builds on plant items in cable database by adding micro circuit breaker information
- Internal flooding analysis information collected in new database:
  - Flooding Database: Combines information from Cable and Circuit Breaker and Plant Item Databases with flooding scenario analysis.





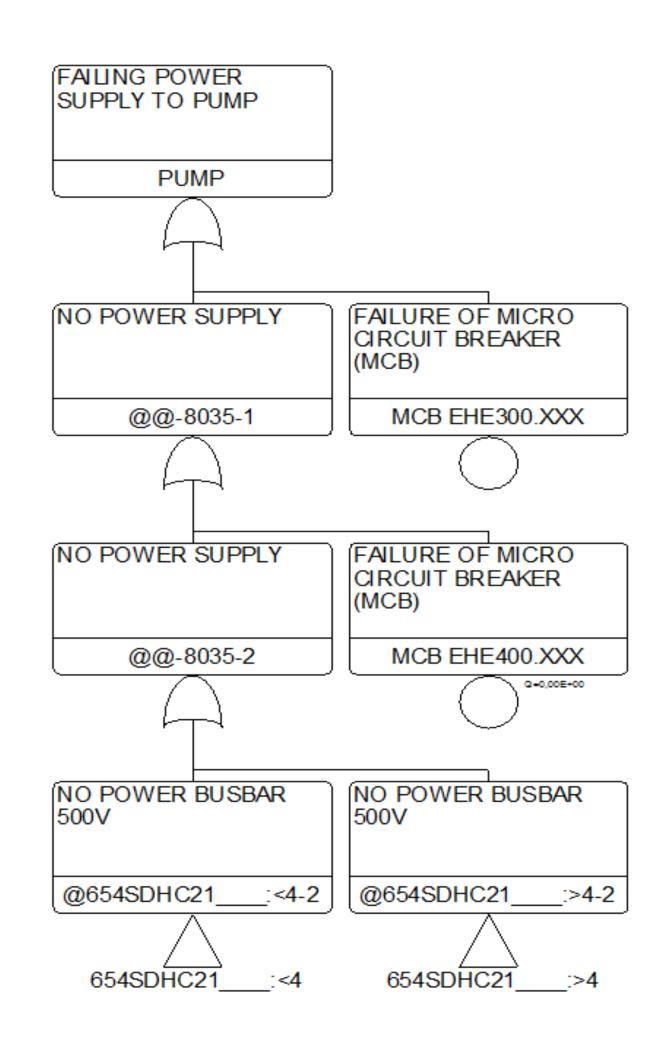
## **Cable Database**

- Establishes Connected Plant Items
  - Example cable runs from 20554RI-03A to X404
  - Junction boxes, pumps, actuators (no circuit breakers)
- Establishes Cable Routing
  - Rooms entered
  - Branch points (identifying cable positions within rooms)
- Kept living

| L:<br>Area: 2x1+S                                    |                  |           |   |  |  |  |  |
|------------------------------------------------------|------------------|-----------|---|--|--|--|--|
| -                                                    |                  |           |   |  |  |  |  |
|                                                      |                  |           | - |  |  |  |  |
| Typ: FQAR-PG                                         | 1                |           | - |  |  |  |  |
| Ansl.Fr: 20554RI-0                                   | AD               |           | - |  |  |  |  |
| Fran: 2-H 1.09                                       |                  |           | - |  |  |  |  |
| Ansl.Ti: X404                                        | Ixana            |           |   |  |  |  |  |
| TIII: 2-H 1.14                                       | _                | -         | - |  |  |  |  |
| 194.55                                               | _                | A         |   |  |  |  |  |
| Sub:                                                 | -                | м         | _ |  |  |  |  |
| Separationsklass:                                    | -                | 3         |   |  |  |  |  |
| Kabelklass:                                          | -                |           | _ |  |  |  |  |
| Funktionsklass:                                      | -                | 2E        | _ |  |  |  |  |
| Kategori:                                            | -                |           |   |  |  |  |  |
| Brand Funk. krav:                                    | _                | NEJ       | _ |  |  |  |  |
| Mont. Seism. S1:                                     | 1                | NEJ       |   |  |  |  |  |
| System: 20554<br>Anm.:                               |                  |           | _ |  |  |  |  |
| Routingkod: Routing anmärknin<br>Kablen är förlagd i |                  | 76        |   |  |  |  |  |
| knutpunkt C551 till<br>i 2-H 1.14.                   | koppling         | slåda X40 | 4 |  |  |  |  |
| Batch_ID: Ne                                         | kans 060         | 320       |   |  |  |  |  |
|                                                      | 10485            |           | m |  |  |  |  |
| ID Från:                                             | _                |           |   |  |  |  |  |
| ID TIII:                                             | 10563            |           |   |  |  |  |  |
| ID Till:<br>Totsi Längd:                             | 10563<br>78<br>7 |           | m |  |  |  |  |

#### Kabelkort: 20020Y

| 05     | Knutpkt | Typ                       | Rum       | FkI | Full | Info |  |  |  |  |
|--------|---------|---------------------------|-----------|-----|------|------|--|--|--|--|
| 1      | E390    | V                         | 2-H 1.09  |     |      | -    |  |  |  |  |
| 2      | 2218    | G                         | 2-H 1.09  |     |      |      |  |  |  |  |
| 3      | E389    | V                         | 2-H 1.09  | -   |      |      |  |  |  |  |
| 4      | E388    | V                         | 2-H 1.09  |     |      |      |  |  |  |  |
| 5      | 2212    | G                         | 2-H 1.09  | -   |      |      |  |  |  |  |
| 6      | E387    | V                         | 2-H 1.09  |     |      |      |  |  |  |  |
| 7      | 2160    | н                         | 2-H 1.09  | -   |      |      |  |  |  |  |
| 8      | 2159    | н                         | 2-H01.09  |     |      |      |  |  |  |  |
| 9      | 2135    | G                         | 2-H01.09  | -   |      |      |  |  |  |  |
| 10     | E315    | v                         | 2-H01.09  |     |      |      |  |  |  |  |
| 11     | 2158    | G                         | 2-H01.09  |     |      |      |  |  |  |  |
| 12     | E316    | v                         | 2-H01.09  |     |      |      |  |  |  |  |
| 13     | 2161    | G                         | 2-H01.09  |     |      |      |  |  |  |  |
| 14     | 2164    | н                         | 2-H01.09  |     |      |      |  |  |  |  |
| 15     | 2165    | н                         | 2-H02.03  |     |      |      |  |  |  |  |
| 16     | 2178    | G                         | 2-H02.03  |     |      |      |  |  |  |  |
| 17     | C537    | V                         | 2-1402.03 |     |      | -    |  |  |  |  |
| 18     | 2880    | G                         | 2-H02.03  |     |      |      |  |  |  |  |
| 19     | 2681    | H                         | 2-1402.03 |     |      |      |  |  |  |  |
| 20     | 2882    | н                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 21     | 2883    | G                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 22     | C540    | v                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 23     | 2885    | G                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 24     | C546    | v                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 25     | 2893    | G                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 26     | 2894    | н                         | 2-H 1.24  |     |      |      |  |  |  |  |
| 27     | 2895    | н                         | 2-H 1.25A |     |      |      |  |  |  |  |
| 28     | 2896    | G                         | 2-H 1.25A |     |      |      |  |  |  |  |
| 29     | C551    | v                         | 2-H 1.25A |     |      |      |  |  |  |  |
|        |         |                           |           |     |      |      |  |  |  |  |
|        |         |                           | Senaste   |     |      |      |  |  |  |  |
| Projek | t ID:   | A.00537.W6.IM.EN.WS.CA.E1 |           |     |      |      |  |  |  |  |

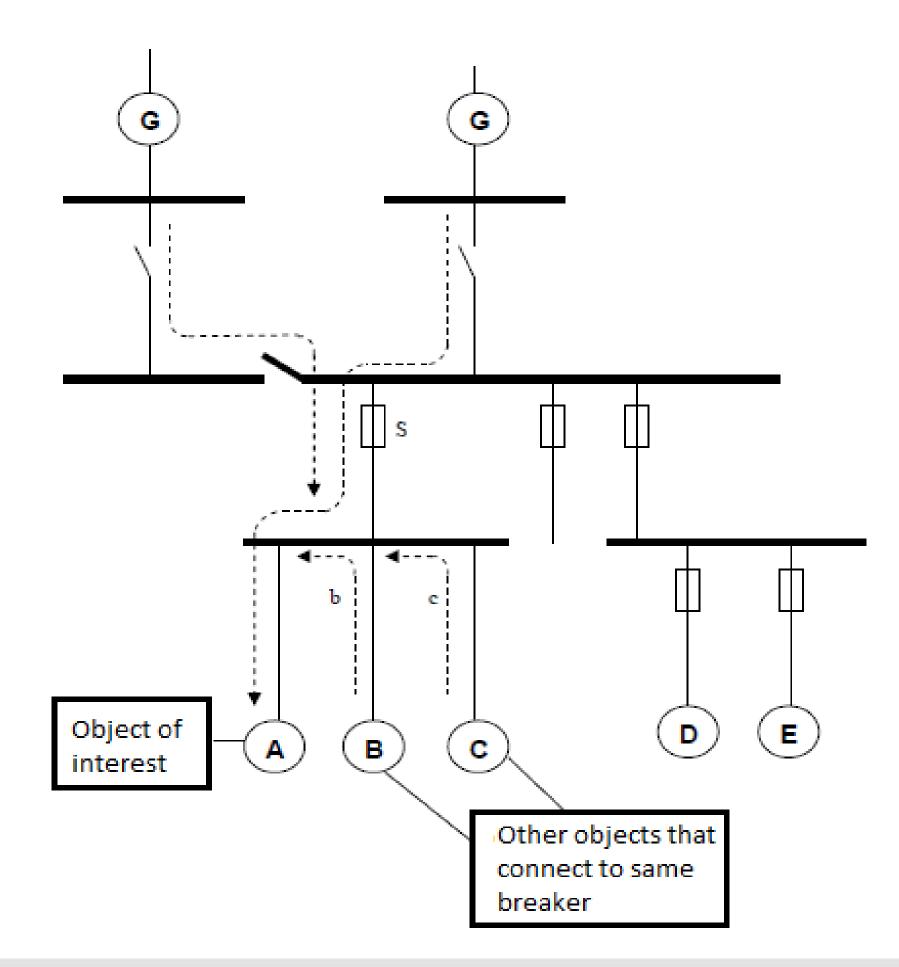





## **Circuit Breaker and Plant Item Database**

Using a sub-set of Cable Database information provides an interface to the PSA

- Provides electrical connections between plant items • In addition to Cable database plant items, adds micro circuit breakers
- Contains information on dependencies between plant items modelled in the PSA
- Junction boxes and cables not explicitly modelled in PSA • In PSA the dependencies are modelled through the micro circuit breaker basic events.








## **Circuit Breaker and Plant Item Database Example**

- Several plant items ((A,B,C) and (D,E)) connected to single Micro Circuit Board, creating dependencies • Plant items A, B, and C could be located in three
- different rooms, and cables to plant items could be routed through additional rooms.
- Creates inter-plant item dependencies and associated inter-room dependencies of importance to flooding scenarios
- Several plant items connected to a single Micro Circuit Board creating dependencies
- Critical to correctly track all dependencies before impact of flooding scenarios is superimposed







# Flooding Database: Superimposing the flooding scenarios

- Includes information on cables (from the cable database) and circuit breakers
- Utilizes flooding scenario information and superimposes it onto the detailed electrical information
- flooding scenario
- Dependencies to room locations and other plant items (eg cubicles) are incorporated into the state of modelled micro circuit breakers
- For a single Ringhals unit, the database includes records for 3000 cables and 800 cabinets

including connected plant items (from Circuit Breaker and Plant Item database)

• Enables a mapping of micro circuit breakers which can be deemed failed in a given

PSA only models key plant items (eg valves and pumps) and micro circuit breakers





## Flooding Database: Example contents

#### Scenario

#### Pipe Break

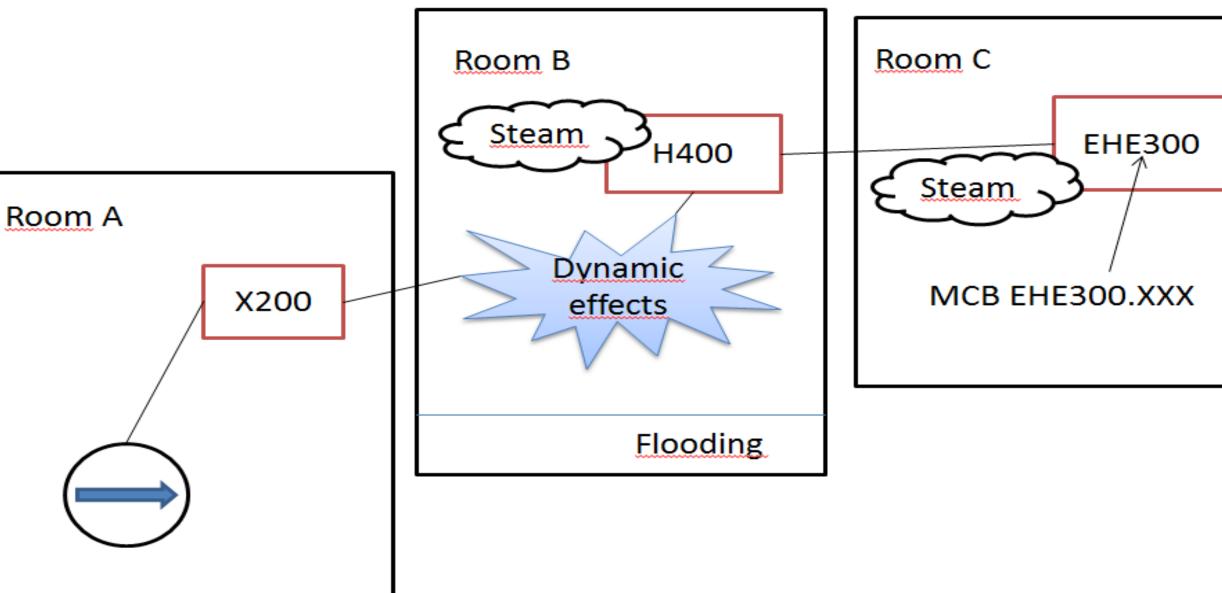
| Pipe Break ID:     | SD_H 1.26_334_1 |
|--------------------|-----------------|
| RoomID:            | 3-Н 1.26 🗸      |
| System Number:     | 334             |
| Flow:              | 97              |
| Dynamic Effects:   |                 |
| Detailed Dynamic E |                 |

Comment:

| Nater Path |         | Steam F | Path Sy | System Conse |      | equence | References |         |   |
|------------|---------|---------|---------|--------------|------|---------|------------|---------|---|
|            |         |         | _       |              |      |         |            |         |   |
|            | Ste     | ep ⊸t   | Roo     | m ID         | Ŧ    | Water   | Lev        | el (cm) | * |
|            | 1       |         | 3-H 1.2 | 6            |      | 89      |            |         |   |
|            | 2       |         | 3-H 1.0 | 1            |      | 3,3     |            |         |   |
|            | 3       |         | 3-H 1.0 | 2            |      | 9       |            |         |   |
|            | 4       |         | 3-H 1.0 | 5            |      | 1       |            |         |   |
|            | 5       |         | 3-H01.1 | L4           |      | 78      |            |         |   |
|            | 6       |         | 3-H01.1 | 15           |      | 19      |            |         |   |
|            | 7       |         | 3-H01.1 | 17           |      | 60      |            |         |   |
|            | 8       |         | 3-H 1.3 | 3            |      | 0,1     |            |         |   |
| *          |         |         |         |              |      | 5       |            |         |   |
|            |         |         |         |              |      |         |            |         |   |
| Po         | st: 🖬 🔶 | 1 av 8  | • • •   | W1           | nget | filter  | Sök        |         |   |

#### Plant Item Hazard Susceptibility Information

| ObjectID              | Туре  | Steam<br>Proof | Water<br>Proof | Level<br>(cm) | Fire<br>Proof | Smoke<br>Proof |
|-----------------------|-------|----------------|----------------|---------------|---------------|----------------|
| 303348154.41          | Valve | False          | False          | 0             | False         | False          |
| 30334CSAPBA-<br>01.01 | Pump  | False          | False          | 10            | False         | False          |
| 302950                | Cable | True           | True           | 0             | False         | False          |








### Flooding Database: Example application to flooding scenario

- High-energy break flood scenario
- Dynamic effects impact cable between X200 and H400.
- Flood source contained within source location
- Steam penetrates from source location into Room C
- Steam damages micro circuit breaker EHE300.XXX
- Failed micro circuit breaker modelled in PSA causes pump to fail
- Only through interrogation of flooding database can root cause(s) of plant item failures be established







### **Concluding remarks on the detailed electrical mapping approach**

- are automatically set up in the PSA
- a given flood scenario
- detailed underlying information and PSA
- potential vulnerabilities implied by the dependencies
  - May point to relatively benign electrical reconfigurations which could yield significant safety improvement
  - Applied to plant items essential for continued plant operation could lower commercial risk by minimizing risk for unplanned plant shutdowns

Automatic PSA implementation: Flooding analysis cases and boundary conditions

Visualizes dependencies clearly and enables easy interrogation of consequences of

• The database approach for storing the information facilitates easy update of the

• Application of the electrical mapping approach provides a detailed overview of





#### Jakob Christensen

#### jakob.christensen@riskpilot.se +46 70 524 66 72

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii, USA

The state of the state of the



