

Addressing Off-site Consequence Criteria Using PSA Level 3 -Enhanced Scoping Study

Presentation at PSAM 12, Thursday 6/26/2014, Honolulu, Hawaii, USA

Working together for a safer world

Outline

- Background and Purpose
- Scope and organization of project
- Short summary of selected activities
 - Industry survey
 - Risk metrics
- Project is jointly funded by:
 - Nordic PSA Group (NPSAG),
 - Nordic Nuclear Safety Research group (NKS) and
 - Finnish Research Programme on Nuclear Power Plant Safety (SAFIR2014).

Background and purpose

- Increased interest in PSA Level 3 and the Fukushima Daiichi disaster did put even greater focus on this area.
 - Shareholders and insurance companies may have an even stronger interest than regulators.
 - In parallel there are ongoing activities to develop an ANS/ASME PSA level 3 standard and IAEA are also working on a guidance document.
- The objective of this 3 year study is to further develop understanding in Level 3 PSA within the Nordic countries, in order to determine
 - the scope of its application,
 - its limitations,
 - the appropriate risk metrics,
 - and the overall need and requirements for performing a Level 3 PSA

Project scope and organization

- Scope of the project is to provide guidance in following areas:
 - Industrial purpose; what benefits can be achieved?
 - What kind of risk metrics can be used?
 - What requirements would a Level 3 PSA put on existing Level 1 & Level 2 studies?
 - Give Insights on abilities of existing Level 3 PSA tools/codes
 - Monitor international activities in development guides and standards
 - Development of a practical Nordic guidance document on how to perform a Level 3 PSA
- During Phase 1 (2013) the focus has been on following topics
 - Perform an industry and literature survey
 - Look into different risk metrics

Participation in IAEA activities related to development of Level 3 guidance
 ©Lloyd's Register Consulting

Industry and literature survey

- Main part has been to develop a questionnaire to perform and industry survey in order to support the project as a whole. This survey covered following topics:
 - Risk comparison
 - Needs for Level 3 PSA
 - Advantages and risk communication
 - Challenges with Level 3 PSA
- Some of the findings from the survey is provided in the following slides

Industry and literature survey - Findings

Risk comparison

- Possible to do but care is needed.
- Respondents not in full agreement if comparison between NPPs is needed
- Risk comparison is <u>not</u> a strong driver for performing Level 3.

Needs for Level 3 PSA

- Objective tool for decision making, e.g. costs and emergency preparedness
- Difference in opinion regarding on how to define "unacceptable effects":
 - Nuclear expert Safety goal
 - Insurance Deviation from "normal"

Advantages and risk communication

- If risk can be defined in comparable terms (e.g. monetary) it would be easier to communicate between different stakeholders.
 - Communication paths, next slide

Challenges with Level 3 PSA

- Several challenges, e.g. choice of risk metrics and how to handle uncertainties that stem from Level 1 and 2 (and within the Level 3)
- Challenges do <u>not</u> motivate from <u>not</u> performing Level 3.

Industry and literature survey – Communication paths

Nuclear experts

		Authorities				
From \rightarrow		and		Health and		
то↓	Experts	Government	M edia	E nvorinment	Private person	
Private						
person	3	4	3	3	2	
Health and						
Envorinment	3	4	1	2		
M edia	3	4	2			
Authorities						
and						
Government	4	3				
Experts	3					

Insurance companies

		Authorities				
From \rightarrow		and		Health and		
То↓	Experts	Government	Media	Envorinment	Private person	
Private person		5	3			
Health and Envorinment	5					
Media	3	3	1			
Authorities and						
Government	2	3				
F (2					
Experts	3					

Appropriate risk metrics

- Main objective during Phase 1 was to discuss different risk metrics and their advantages and disadvantages and thereby contribute to the further work in the project.
- Safety goals (numerical criteria) as such are <u>not</u> discussed.
- Risk metrics of PSA Level 3 have two components:
 - Probability metric, e.g.
 - Per unit or site and year (comparable to Level 1 and 2 PSA)
 - Per lifetime, per produced energy over complete fuel cycle
 - May be more relevant if total risk is to be considered
 - Consequence metric
 - Health effects Dose
 - Environmental impact

• Economic impact (can include every other risk metric) ©Lloyd's Register Consulting

Appropriate risk metrics – conclusions

- Health effects Dose
 - Identified metrics:
 - Collective dose/individual dose
 - Prompt fatalities (short term)
 - Cancer fatalities (long term).
 - Advantages:
 - Straight forward to calculate.
 - Both short and long term
 - Disadvantages:
 - Do not capture complete impact, e.g. contamination etc not covered.

Environmental impact

- Identified metrics:
 - Ground contamination level due to Cs-134 and Cs-137
 - Non-usable areal of land and sea
- Advantages:
 - Same as health effects in many ways
- Disadvantages:
 - How to evaluate the impact between different of land?
 - Comparison between sites need conversion factors.
 - Release to sea or river is complex, considered not as important as air and land.

Appropriate risk metrics – conclusions

Economic impact

- Identified metrics: Total cost [€]
- Advantages:
 - Theoretically all impacts can be covered by single metric.
 - Consistent risk comparisons and cost-benefit analyses
- Disadvantages:
 - Difficult to agree on what should be included and how to convert different impacts in a monetary scale.

• Economic impact – Thoughts

- Despite the difficulties it should be sufficient to estimate order of magnitude of different types of accidents.
 - TMI with no external release would mean certain economic impact.
- Other magnitudes can be assumed depending on release dispersion.
- Despite the difficulties of conversion into monetary values the exercise can be useful.
 - Commonly agreed conversion factors
 - Increased understanding of risk
 and facilitate communication

Ongoing and future work

- During Phase 1 (2013) focus has been on
 - Industry Survey User needs
 - Risk metrics exploring different possibilities
 - Regulation and standards mainly participation on IAEA work
- During Phase 2 (2014) focus is on:
 - Regulation and standards participate with IAEA and monitor ANS/ASME
 - Pilot application one from Sweden and one from Finland
 - Start with guidance document
- During Phase 3 (2015) aim is to focus on:
 - Finalize pilot applications
 - Finalize guidance document

Co-authors:

Andrew CaldwellLloyd's Register ConsultingMalin NordqvistÅF IndustryGunnar JohanssonÅF IndustryCarl SundeCarl SundeRisk PilotJan-Erik HolmbergRisk PilotIlkka KarantaVTT

Anders Olsson Principal Consultant T +46 70 733 43 08 E anders.olsson@lr.org

Lloyd's Register Consulting www.lr.org/consulting

Working together for a safer world

Lloyd's Register and variants of it are trading names of Lloyd's Register Group Limited, its subsidiaries and affiliates. Copyright © Lloyd's Register Consulting. 2013. A member of the Lloyd's Register group.