Analyzing system changes with importance measure pairs: Risk increase factor and Fussell-Vesely compared to Birnbaum and failure probability

PSAM 12
$12^{\text {th }}$ International Probabilistic Safety Assessment and Management Conference

Honolulu, USA
22-27 June 2014

Janne Laitonen
Ilkka Niemelä

Introduction

- Importance measures are used to rank components according to a selected criterion depending on the decision problem
- e.g. finding system vulnerabilities or targeting maintenance and inspections
- Sometimes more than one importance measure may be used, e.g., risk increase factor, RIF, (i.e. risk achievement worth, RAW) and Fussell-Vesely, FV, (risk reduction worth: RRW = 1/(1-FV))
- This approach is compared to an alternative method which utilizes Birnbaum importance measure and the failure probability X_{i} of a basic event

RIF and FV mapping

- RIF, FV and failure probability X_{i} are tied by $R I F=1+F V\left(1 / X_{i}-1\right)$
- These curves for different failure probabilities X_{i} are shown below
- Basic event with failure probability X_{i} can only appear on the corresponding curve regardless of the system

Birnbaum and failure probability mapping

- Birnbaum is dependent on the structure of the system and independent of the corresponding failure probability X_{i}
- Interpretation of the measures is simple
- Lines for equal risk (shown below) divide the space into risk zones

Illustrative example: pump line system

- Utilizing importance measure pair (FV, RIF) or ($\mathrm{X}_{\mathrm{i}}, \mathrm{B}$) in analyzing system changes is compared with the following pump line system

- Following changes to the system are considered:

1. Redundant pump P2 and valve V2 installed

$$
\begin{aligned}
& \mathrm{TOP}=\mathrm{L} 1+(\mathrm{V} 1+\mathrm{P} 1)(\mathrm{V} 2+\mathrm{P} 2) \\
& \operatorname{Pr}(\mathrm{TOP})=2.11 \mathrm{E}-5 \\
& \text { Failure probabilities: } \\
& \operatorname{Pr}(\mathrm{L} 1)=1 \mathrm{E}-5 \\
& \operatorname{Pr}(\mathrm{~V} 1)=\operatorname{Pr}(\mathrm{V} 2)=1 \mathrm{E}-4 \\
& \operatorname{Pr}(\mathrm{P} 1)=1 \mathrm{E}-2, \operatorname{Pr}(\mathrm{P} 2)=1 \mathrm{E}-3
\end{aligned}
$$

2. Failure probability $\operatorname{Pr}(\mathrm{L} 1)$ changed from $1 \mathrm{E}-5$ to $1 \mathrm{E}-6$
3. Failure probability $\operatorname{Pr}(\mathrm{P} 2)$ changed from $1 \mathrm{E}-3$ to $1 \mathrm{E}-4$

(FV, RIF)-map: \#1 installing P2 and V2

($\mathrm{X}_{\mathrm{i}}, \mathrm{B}$)-map: \#1 installing P2 and V2

(FV, RIF)-map: \#2 Pr(L1) changed from 1E-5 to 1E-6

($\mathrm{X}_{\mathrm{i}}, \mathrm{B}$)-map: \#2 $\operatorname{Pr}(\mathrm{L} 1)$ changed from 1E-5 to $1 \mathrm{E}-6$

(FV, RIF)-map: \#3 Pr(P2) changed from 1E-3 to 1E-4

($\mathrm{X}_{\mathrm{i}}, \mathrm{B}$)-map: \#3 $\operatorname{Pr}(\mathrm{P} 2)$ changed from 1E-3 to $1 \mathrm{E}-4$

Conclusions

- Using failure probability and Birnbaum in analyzing system changes was found to have several advantages compared to Fussell-Vesely and risk increase factor:

1. Failure probability and Birnbaum are independent on each other and therefore can be illustrated orthogonally
2. The measures are absolute which means that comparison of different system configurations is evident. Another consequence of absoluteness is that the change on basic event importances expresses real change and only those basic events move on the graphical illustration that are really affected by the modification
3. The axes of the graphical illustration have clear interpretations, failure probability and safety margin, so understanding the location of the basic events is straightforward
