#100 Development of Accident Consequence Assessment Scheme using Accident Cost and Consideration of Decontamination Model

Kampanart Silva	Thailand Institute of Nuclear Technology
Koji Okamoto	The University of Tokyo
Yuki Ishiwatari	The University of Tokyo, Hitachi-GE Nuclear Energy, Ltd.
Shogo Takahara	Japan Atomic Energy Agency
Jiraporn Promping	Thailand Institute of Nuclear Technology

Motivation of research on accident cost calculation

Accident cost calculation: Methodology & Results

Revision of decontamination cost calculation model

Sensitivity analysis: Elementary effect method

Conclusions

Motivation of research on accident cost calculation

Components of accident cost

Health effects

- Radiation effect cost
- Psychological effect cost

Social impacts

- Harmful rumors

Economic impacts

- Sheltering cost
- Evacuation cost
- Relocation cost
- Food intake restriction cost
 - Alternative source cost

Environmental impacts

- Decommissioning cost
- Decontamination cost

Results: Normalized accident cost

Silva K, Ishiwatari Y, Takahara S. Cost per severe accident as an index for severe accident consequence assessment and its applications. Reliab. Eng. Syst. Saf. 2014;123:110-22.

Results: Breakdowns of accident cost

Silva K, Ishiwatari Y, Takahara S. Cost per severe accident as an index for severe accident consequence assessment and its applications. Reliab. Eng. Syst. Saf. 2014;123:110-22.

To formulate the decontamination model for accident cost calculation.

D To perform a sensitivity analysis to identify:

- Parameters with large influence on accident cost calculation and large extent of interactions with other parameters;
- ◆ Parameters with negligible influence.

Formation of decontamination cost calculation model

Costs associated with decontamination work

Costs associated with radioactive wastes

Sensitivity analysis: Elementary effect method

Why sensitivity analysis?

- □ To check the influence of each parameter to the model.
- To keep only important parameters distributed, fix other parameters to constants, in order to simplify the model.

Why elementary effects method (Morris method)?

- **D** The method is simple.
- It is somewhere between local sensitivity analysis and global sensitivity analysis.
- **\square** The results are simple: only μ^* s and σ s.
 - $\mathbf{\Phi} \mu^* \mathbf{s}$ help identify parameters with large contribution to accident cost
 - $igstarrow \sigma$ s help identify parameters having large interactions with others

Determination of parameter distributions

No.	Parameter	Type of Distribution	Min.	Max.	Remarks
1	Dose for decontamination target area setting [mSv/year]	Discrete	1	20	4 annual dose rates (1, 5, 10 and 20) with same probability density (P(x) = 0.25).
55	Determination whether or not to include cost due to waste disposal	Discrete	0	1	[0, 0.5) = no/ [0.5, 1) = yes.
60	Number of workers that can be involved in the decontamination work [man-year/year]	Uniform	5000	50000	Determined by the evaluator.
56	Unit cost of waste disposal [JPY/m ³]	Uniform	650000	3018000	
36	Waste generated by removing soil or covering with soil [m ³ /m ²]	Uniform	0.000	0.079	

μ^* s and σ s of all parameters

- 1: Dose for decontamination target area setting
- 53, 55, 56, 58: Waste management related parameters
- 60: Number of workers involved in decontamination
- 36, 38, 44: Volumes of waste generated per unit area
- 11, 16: Rates of usage of decontamination techniques
- 19: Selection of the way to distribute the unit costs

μ^* s and σ s of all parameters (zoomed-up ver.)

\square μ^* s and σ s over 0.05

- Rates of usage of some decontamination techniques
- Unit costs of some decontamination techniques
- Other waste managementrelated parameters
- Work speeds of some decontamination techniques
- None of parameters that affect radiation effect cost are influential
 - \Rightarrow Small interaction

cost

between decontamination cost and radiation effect

Conclusions

- □ The calculation scheme of accident cost was introduced.
- □ The decontamination model was reconsidered to:
 - Collect enough data to appropriately determine the values of parameters;
 - Make sure that all assumptions are appropriate.
- □ A sensitivity analysis was performed to identify:
 - Parameters with large contribution to accident cost;
 - Parameters having large interactions with others.
- Parameters that are influential to the accident cost are:
 - the dose of setting decontamination target area;
 - ♦ a number of waste management-related parameters;
 - \blacklozenge the number of workers involved in decontamination work etc.
- None of parameters that affect radiation effect cost are influential
 - Small interaction between decontamination cost and radiation effect cost

Thank you for you attention

