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Abstract: Planetary protection (PP) is a discipline to minimize the inadvertent contamination of other planetary 

bodies by harmful microorganisms. The InSight mission was classified by NASA as a biologically sensitive 

mission to Mars. Thus, the flight hardware had to undergo microbial reduction and cleanliness verification/testing. 

NASA’s approach since the 1970’s provides a worst-case point estimation of the total microbial bioburden. This 

point estimation approach does not provide a probabilistic distribution of the bioburden, accounts for uncertainty 

arbitrarily and does not report credible intervals. To remediate these concerns, a Bayesian statistical approach was 

employed to estimate the microbial bioburden present on the InSight mission. 

 

If no prior information about the microbial bioburden of the spacecraft is known, Bayesian analysis typically 

assumes a “non-informative” or weakly informative prior status, which can allow the data to essentially “speak 

for themselves.” However, since Bayesian estimators are effectively shrinkage estimators, the effect of the initial 

non-informative status is most noticeable and potentially misleading when analyzing rare events. With very few 

non-zero data points, the shrinkage is particularly pronounced towards the mean value of the prior status as the 

likelihood provides no evidence that the bioburden density differs from zero. 

 

This paper analyzes the performance of several non-informative priors—the Jeffreys non-informative prior, the 

Jeffreys constrained non-informative prior, and the Uniform prior and the Gamma (α,β) prior for different values 

of the parameters. The performance of different non-informative priors is evaluated in comparison to maximum 

likelihood estimation as well as through Bayesian model validation. 

 

Keywords: NASA, Bayesian model, non-informative prior 

 

1.  INTRODUCTION 
Probabilistic risk assessment (PRA) is a mature and influential technology that relies on two core 

methodologies—fault/event trees and statistical parameter estimation. The Contamination Probability Event Trees 

analysis utilizes Boolean logic to combine different paths to contamination events. Once such paths are 

exhaustively enumerated, the elementary probability rules are applied to aggregate the probabilities of different 

contamination scenarios into a contamination event. PRA performance depends critically on the accuracy of 

parameter estimates for individual components, as they are merged through event tree analysis to produce the 

overall probability of an inadvertent biological contamination event. One of the most important parameters 

affecting the probability of bio-contamination is the initial bioburden at launch, which accounts for the number of 

microorganisms present on the spacecraft. Historically, a frequentist approach has been used in planetary 

protection to estimate bioburden densities for individual components. However, in other PRA subject areas, the 

Bayesian approach has been used widely and successfully. We consider the two approaches complimentary rather 

than opposing each other because the Bayesian approach complements the frequentists’ likelihood function with 

prior information in the form of distribution data against the parameter of interest. This paper compares and 

contrasts the two approaches used for these calculations and provides understanding of their performance using 

data collected during the InSight mission. 

 

Planetary protection (PP) is an international discipline focused on the biological cleanliness of space exploration. 

The PP discipline was defined from the United Nations (UN) Outer Space Treaty of 1967, which provided the 

legal principles and framework for the exploration of outer space including that State Parties shall, “conduct 
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exploration of them so as to avoid harmful contamination and also adverse changes in the environment of Earth 

resulting from the introduction of extraterrestrial matter.” In response to the UN Outer Space Treaty, the 

International Committee of Space Research (COSPAR) established a PP policy to avoid harmful biological 

contamination of celestial bodies from terrestrial sources, and harmful contamination of Earth from extraterrestrial 

sources referred to as forward and back PP, respectively. Each space-faring nation then developed their own set of 

requirements for spacecraft biological cleanliness based on target bodies and spacecraft type (e.g., flyby, orbiter, 

lander) and reports compliance to COSPAR on a biannual basis. 

 

National Aeronautics and Space Administration (NASA) procedural requirement (NPR) 8020.12, “Planetary 

Protection Provisions for Robotic Extraterrestrial Missions,” requires a stringent biological contamination 

prevention regime to planetary bodies of astrobiological interest for investigations of extant or evidence of extinct 

life, rather than those missions with no aims at life detection. For Mars missions, biological contamination 

concerns are the driver of hardware cleanliness requirements, which are satisfied by implementing biological 

reduction processes, recontamination prevention, and direct verification testing. As a measure of total 

microbiological cleanliness, NASA has selected the bacterial spore as a proxy for the total microbial bioburden 

for Mars-bound missions. The robust ability of the spores to resist harsh environmental conditions of 

interplanetary transfer and microbial reduction processes on the ground makes it the “worst case contaminant.” 

 

For a landed system not carrying instruments for investigations of extant life, the missions are required to not 

exceed 5×10
5
 spores on launched spacecraft and limit the distribution of the total bioburden across the total 

sampled surface area of the spacecraft to an average bioburden density of ≤300 spores/m
2
. To demonstrate 

compliance with these requirements, each project undergoes an extensive bioburden accounting effort, which 

tracks each individual hardware component throughout the assembly lifecycle, the associated biological reduction 

modalities implemented, and the bioburden density values acquired through direct testing of hardware 

components. NASA’s technical specification for the verification of biological cleanliness on hardware surfaces 

(NASA Technical Handbook 6022) identifies the swab- and wipe-rinse methods as the predominate methodology 

to estimate the bioburden on spacecraft surfaces. 

 

The hardware is sampled using a water-dampened swab or wipe throughout the integration and testing phase of 

the mission capturing a portion of the total surface area of each component. Once the sample is collected, it is then 

taken back to the lab where the sampling device is submersed in an extraction solvent and sonicated for 2 minutes 

± 5 seconds to remove the biologicals from the sampling matrices. The extraction fluid is then heat-shocked at 

80°C ± 2°C for 15 min. to select for heat-resistant organisms (e.g., spores). Aliquots of the extraction fluid are 

then placed into petri dishes ranging from 2–4 ml for swabs and 13–25 ml for wipes. A growth medium (tryptic 

soy agar) at 48–50°C is then added to the petri dishes and gently swirled to mix the extraction fluid and growth 

medium. After the mixture has cooled and settled, the petri dishes are aerobically incubated at 32°C and inspected 

for colony forming unit (CFU) at 24, 48, and 72 hours of incubation. The final raw CFU counts are recorded at 72 

hours and are used for subsequent calculations. Associated hardware items are grouped together based on their 

assembly architecture and the raw CFU counts are used to calculate the bioburden density for a given hardware 

grouping. Given the previously established hardware hierarchy, the bioburden density of each hardware 

component contained within a group are then summed and extrapolated up to the entire spacecraft level. For a 

majority (>75%) of the groups, certain hardware components are deemed unsampleable and are instead accounted 

for using previously determined bioburden densities (i.e., the NASA specification values). Notably, for the 

purposes of this model development only hardware that was directly sampled was evaluated. 

 

For Mars-destined spacecraft, the approach for performing raw CFU calculations to acquire bioburden densities 

have been negotiated between the NASA PP Office and each respective flight project on a mission-by-mission 

basis. The balance of these negotiations captures some combination of NASA’s risk posture through conservatism 

from the policymakers with the existing science dataset and assumptions, sampling and processing efficiency 
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values, and the ability of a mission to extensively sample accountable surface areas while enabling projects to 

perform reasonable PP implementation strategies facilitating a successful launch. 

 

The Mariner Mars 1971 and Viking missions used a sum-of-the-means mathematical approach that factored in 

raw CFU, sampling and processing efficiencies, surface area sampled, and total surface area. The Mars Pathfinder 

Mission (MPF) was the next mission to land on Mars in the late 1990s, which sent a table top-sized rover to Mars. 

Raw bioburden MPF counts were treated using a combination of Poisson and Gaussian statistics based on the 

sampling device, total CFU, and observed frequency of CFUs (e.g., many swabs over a surface with a low CFU 

probability). The statistical MPF treatment scenarios included Poisson statistics for swab samples with 0 CFU, 

Gaussian statistics for wipe samples with 0 CFU, and Gaussian statistics for a combination of wipe and swab 

samples with >1 CFU, all while factoring in the sum of the mean. Final bioburden density numbers were 

calculated using the sum of the 3-sigma value and either the true total CFU or an artificial value of 1 in the event 

of an observed total CFU of zero. In the early 2000s, golf cart sized rovers were developed and launched for the 

Mars Exploration Rover (MER) missions. MER employed an approach that was statistically identical to MPF. 

The next mission to Mars was the 2007–2011 Mars Science Laboratory (MSL) mission, which landed a spacecraft 

on the surface of the planet that was the size of a MINI Cooper automobile. Given the size of MSL, the previous 

statistics of MPF/MER would have treated all wipes in a Gaussian fashion, which would have been unreasonably 

conservative provided the mission used a majority of wipes to sample the inherently larger size of the hardware. 

Thus, MSL expanded the MER/MPF statistics to apply a Poisson statistical approach for wipe samples with 0 

CFU and a Gaussian approach for cases where only one swab or wipe sample was taken and generated >1 CFU, 

referred to as the 3-sigma approach [2]. After the MSL launch, the NASA PP Office evaluated the approach for 

performing raw CFU calculations to acquire bioburden density and re-instated the Viking approach with the use 

of replacing the CFU value to an artificial count of 1 when a value of 0 CFU was observed for an entire group. 

This approach is referred to as the weighted averaging approach, which was used by the InSight mission from 

2013–2018 and is being utilized on the current Mars 2020 mission as well. 

 

Provided with the extensive dataset from multiple missions evaluating the different approaches of acquiring 

bioburden density utilized to date is key to help document and provide a technical mathematical and PP discipline 

rationale. The bioburden maximum approach has been good enough to meet bioburden requirements despite the 

introduction of unnecessary error and loosely defined mathematical substitutions of CFU. These past missions 

have been afforded the flexibility to negotiate statistical implementation approaches in regard to a mission’s 

biosampling verification approach, reported bioburden maximum values, and employed a NASA policy direction 

to change the CFU from 0 to 1 while still meeting their bioburden requirements. However, as future missions 

involving the exploration of Outer Planets, sample return, and carrying humans to Mars become more complex, a 

maximum bioburden density that is overly conservative may not allow for requirements compliance. Therefore, 

for missions with probabilistic risk requirements, such as the upcoming Europa Clipper mission, bioburden 

distribution is a key parameter (N0) that defines the initial starting bioburden contamination for the system [3]. 

Given a more realistic understanding of bioburden on the risk assessment of the spacecraft can help to not only 

satisfy mission requirements with greater confidence, but also drive microbial reduction trades and ensure overkill 

treatments are not unnecessarily applied to hardware resulting in possible negative impacts and potentially 

additional cost and schedule to projects. The development of this approach will allow PP to: (1) account for 

inherent errors; (2) understand the distribution rather than a point estimate of spores on the spacecraft; and 

(3) monitor individual subsystems with associated confidence levels. By taking past mission use cases into 

account and implementing a baseline Bayesian modeling approach as a means to estimate the bioburden density 

from the raw CFU counts, it will help to establish both a technically robust mathematical and biological approach 

using actual spacecraft test data to evaluate a suite of real-life spacecraft life cycle scenarios. 

 

The data generated by a PP verification campaign encompasses 3–5 years, >10 distinct geographic locations with 

2–3 critical cleanrooms, and >3,000 direct verification tests resulting in ~40,000 petri dishes. The InSight mission 

collected 2,031 swabs and 1,266 wipes on spacecraft hardware surfaces over nearly 4 years. Given the clean 

spacecraft, 93% of the swabs and 63% of the wipes had a 0 CFU count at 72 hours resulting in ~85% of the 
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39,379 petri dishes yielding 0 CFU. Several use cases from the InSight mission were utilized herein for model 

development and validation, but this dataset is representative of the MER and MSL datasets as well with >95% of 

the swabs and >60% of the wipes from direct verification testing yielding 0 CFU at 72 hours. For the InSight 

dataset, a 1 was added to 127 groups when a 0 CFU result was observed yielding 2,557 artificial spores, a 1.7% 

increase to the reported final total mission bioburden.  

 

NASA specification values are assumed for hardware components that cannot be sampled and are based on the 

manufacturing and test cleanroom environments and associated process controls. Specification values are utilized 

in the planning stages of the mission for hardware allocation values when no prior engineering judgment exists. 

These specifications can then be verified by direct sampling of a given component at the vendor site or upon 

receiving inspection. For example, the surface microbial density for hardware in a highly controlled International 

Standards Organization (ISO) Class 5 cleanroom is 50 spores/m
2
 as compared to a standard ISO Class 8 

cleanroom at 1×10
4
 spores/m

2
. To incorporate this pre-determined conservative estimate into the non-informative 

priors evaluated in this work, a constrained non-informative (CNI) was developed that allowed the incorporation 

of a pre-determined expected bioburden density of 300 spores/m
2
 derived from the average bioburden density 

requirement for the InSight mission. This allowed for a policy-based engineering value to be represented in the 

form of a non-informative prior distribution, which would ultimately influence the bioburden density estimations. 

This non-informative prior can thus be utilized by space missions in the future as an absolute worst-case value or 

by NASA headquarters (HQ) for verification activities. Future iterations of this non-informative prior information 

might consider incorporating other expected values of the bioburden density based on various cleanroom 

environmental conditions to better reflect an unknown environment or a well-known environment compared to 

the default conservative approach used in this work. 

 

2.  DATA COLLECTION AND PREPROCESSING 
 

Several different use cases were utilized from the InSight mission to compare the application of various non-

informative prior distributions on the final bioburden density distributions obtained. In addition, raw data from the 

same components were used to generate the currently approved and utilized weighted average approach, as well 

as the previously utilized 3-sigma approach for comparison. The data for each component were collected using 

either swabs or wipes. For each component, a number of samples were collected on one given date or on several 

different dates. A swab data collection covered the area of 0.0025 m
2
 with a single swab, while a wipe covered 

area varied typically between 0.1 and 1.0 m
2
 depending on the geometric complexity and size of the sampled 

component. Each individual swab or wipe was considered a sample. Having been processed in the microbiology 

laboratory, the samples were deposited in petri dishes and covered with tryptic soy agar. For swabs, only 80% of 

the total sample solution was deposited in the dishes, thus producing a pour fraction of 0.8 that was taken into 

account by reducing the surface area sampled (exposure). For wipes, the pour fraction was 0.25. The number of 

samples varied for each component could have been sampled either with swabs, wipes, or both depending on the 

size and complexity of the component. Only true observed counts were utilized for the Bayesian approach; no 

NASA policy directives were employed to change the counts from 0 to 1 afterwards. For the purpose of Bayesian 

analysis, the raw data for each component were represented by pairs (xi,ei), i=1,2...N, where xi is the number of 

CFU counts for the i-th swab or wipe sample and ei is the exposure calculated as the area covered with a swab or 

wipe multiplied by the corresponding pour fraction, and N is the number of samples collected for a component. 

Data for each component were pooled to produce a total count and a total exposure as X=∑ ����  and E=∑ ���� . The 

total count and total exposure have been used in Poisson likelihood for Bayesian inference. “Exposure” and 

“effective sampled area” are used in this paper interchangeably. Eight different InSight components were selected 

for analysis and represent a range of different total CFU counts, effective areas sampled, and total areas of the 

components. Table 1 summarizes this data. 
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Table 1: Summary of Bioburden Data for the Eight Components. 

Component 
CFU 

Count 

Area 

Sampled, m
2 

Exposure: Area 

Sampled*Pour 

Fraction, m
2
 

Total Surface of 

the Component, m
2 

% Sampled=Area 

Sampled/Total Area 

9 0 0.6031 0.2167 0.7580 79.5650 

73 0 2.4200 0.6160 2.7400 88.3212 

300 1 2.6600 0.6705 5.0000 53.2000 

169 1 0.2400 0.1920 0.5850 41.0260 

283 5 4.5710 1.1427 12.0000 38.0920 

243 5 0.2800 0.1140 0.2980 93.9600 

38 12 3.1050 0.8065 10.0000 31.0500 

261 52 0.0600 0.0480 0.3120 19.2310 

 

3.  BAYESIAN INFERENCE WITH NON-INFORMATIVE PRIORS 
 

The specification of prior distribution is one of the most important methodological, as well as practical, problems 

in Bayesian inference. While the major appealing property of Bayesian inference is its ability to include prior 

information into the inference model, sometimes it is required to avoid reliance on old information as it may 

dominate the newly collected data, especially if the new data are sparse. Another reason to do away with 

informative priors is the lack of reliable information about the parameter of interest. Finally, an informative prior 

may be considered “subjective” by peers; as such, using a non-informative prior may help to alleviate this 

concern. 

 

To address all three issues for the bioburden calculations mentioned above, we performed Bayesian inference 

using a Gamma-Poisson compound distribution model, shown in Eq. (1), with four different non-informative prior 

distributions. The aleatory model assumes that CFUs are distributed on the surface of the spacecraft according to 

a Poisson distribution with its single parameter—λ specifying bioburden density. The bioburden density is 

measured in CFU/m
2
 and is the main parameter of interest in this study. 

 

�	
/� = 	�∙���! ���∙�����������������  ! ∙"#∙�#�$∙���∙"%&	#���������'(� (
) 	�∙���! ���∙�����������������  ! ∙"#∙�#�$∙���∙"%&	#���������'(� (

*
+

,-
 (1) 

 

where λ is bioburden density, E is exposure, X is current total CFU count data, α and β is shape and rate 

parameters of Gamma distribution, and Γ	α is Gamma function. The empirical evidence for CFUs being 

distributed according to a Poisson distribution was first reported in [8]. Since then, the Poisson distributional 

model is widely used to represent rare events occurring either over time periods or surfaces and volumes. 

 

The reasons for applying different non-informative priors to the same datasets are twofold: (1) to study the 

sensitivity of posterior and predictive inference to non-informative priors; and (2) to attempt to select the “best” 

non-informative prior for the problem in hand, which can be used as a “default” non-informative prior. The four 

non-informative priors that were used in this paper are: (1) Jeffreys non-informative prior (Jeffreys) [1,5]; (2) 

constrained noninformative prior (CNI) [1]; (3) Maximum Entropy prior (MaxEnt) [4]; and (4) Uniform prior 

(Uniform) [9]. Several reasons motivated the selection of these specific non-informative priors. First, they all can 

be parameterized as a Gamma function, which makes them conjugate, thus significantly simplifying computations 

and allowing interpretation of posterior parameters in terms of data. Second, Jeffreys and Uniform priors are the 

most widely used non-informative priors in Bayesian inference; however, for Poisson likelihood, they are 
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improper, thus complicating Bayesian model selection. They also shrink the parameter of interest to values that 

can be unrealistic. In addition, while Jeffreys is invariant to re-parameterization, Uniform is not. Third, CNI and 

MaxEnt priors can explicitly include information about the moments of prior distribution, thus providing more 

leverage over posterior and predictive inference. The choice of non-informative prior is especially important in 

cases of rare events when many data samples contain zeros and the posterior inference relies exclusively on prior 

assumptions. 

 

The Jeffreys non-informative prior uses the Fisher information matrix to place maximally non-informative prior 

data on the parameters, exploiting the fact that the Fisher information matrix is widely considered as an indicator 

of the accuracy of a parameter estimate. For the Gamma-Poisson model, the Jeffreys prior can be parametrized as 

Gamma(0.5,0), which is an improper distribution; however, it can produce the proper posterior, as long as the 

exposure is not zero. 

 

Uniform prior distribution can be parameterized as Gamma(1,0) and is also improper while producing a proper 

posterior. In this paper, it is defined in the domain as 0<λ<2000. 

 

One of the disadvantages of using improper prior distributions is the lack of well-defined moments for those 

distributions, so it is difficult to foresee how the distribution will affect the data. In this sense, while being 

defendable and simple, improper distributions could be quite unrealistic since the posterior mean is pulled 

towards a mean value of a prior distribution. To address this shortcoming, two proper non-informative priors have 

been applied, which both can explicitly specify the expected mean value of the bioburden. 

 

The first prior was the MaxEnt prior, which is an extension of Laplace’s principle of indifference stating that 

under the lack of evidence, all possible outcomes should be considered equiprobable. For a discrete random 

variable, Shannon [9] introduced the notion of informational entropy, which can be used as a measure of 

“randomness.” In the case of discrete random variables, the uniform distribution happens to have the largest 

entropy; hence, it is considered the most random. The uniform distribution does assign equal probabilities to all 

outcomes, thus satisfying the principle of indifference. For continuous random variables with a probability density 

function of p(θ), the definition can be extended and is called differential entropy in Eq (2). 

 3 = − 5 6	7log	(6(7)) ;7 (2) 

 

However, in contrast to its discrete counterpart, differential entropy can be infinite, negative or positive, and non-

invariant under the change of variables. Most importantly, there is no single maximum entropy distribution for 

continuous variables as differential entropy depends on constraints placed on distributional moments and the 

support of a variable. Since maximum entropy can only be calculated for continuous distributions under 

constraints, placing constraints on a random variable’s expected value and defining it in the positive half-line 

makes exponential distribution a maximum entropy distribution. Exponential distribution can be parameterized as 

Gamma(1,1/μ) where μ is a pre-defined expected value. 

 

The lack of invariance under reparameterization motivated development of a CNI prior [1] which allows 

specifying the expected value of the parameter in addition to retaining desirable properties of the maximum 

entropy distribution. In contrast to differential entropy, the CNI uses the definition of entropy as suggested in [4], 

which is the negative of Kullback–Leibler divergence with a reference distribution π(θ) being the Jeffreys prior in 

Eq. (3): 

 3 = −56(7)log	(>(?)@(?)) ;7  (3) 

 

In addition to the reparameterization property, the CNI also has a larger variance than the MaxEnt, thus 

diminishing the influence of the prior and giving more weight to the data. The variance of prior distribution plays 



 

 PSAM 2019 Topical – Practical use of Probabilistic Safety Assessment, 2-3 December 2019, Stockholm 

a prominent role in Bayesian inference as it defines how strongly the posterior mean is “pulled” towards the prior 

mean. The CNI can be parametrized as Gamma(1/2,1/(2∙μ)), where μ is the pre-defined expected value. Table 2 

provides a summary of the four non-informative priors used in this paper. The posterior distribution mean has 

been used as posterior summary statistics. The 90% credible intervals were used to quantify uncertainty in 

posterior inference. For this paper, μ=300 CFU/m
2
 was used to reflect the allocation based on NASA 

requirements, as nearly all bioburden controlled hardware should be at or below this value post-microbial 

reduction in order to receive a hardware certification for flight. 

 

Table 2: Parameters of Gamma Distribution for Different Non-Informative Priors. 

Prior distribution α- shape β - rate Mean Variance 

Jeffreys 0.5 0 undefined undefined 

CNI 0.5 1/(2·µ) µ 2·µ
2 

MaxEnt 1 1/µ µ µ
2
 

Uniform 1 0 undefined undefined 

 

Along with the bioburden density λ, NASA requires an estimate of the total number of CFU for each spacecraft at 

launch. This required the evaluation of the total CFU numbers for each component before summing them up. To 

perform this estimation, posterior predictive Bayesian inference has been applied using posterior predictive 

distributions for the Gamma-Poisson model in Eq. (4): 

 

NBCxE; X, I>JKL , MN OPMN OPQRS���> T =) (-∙RS)UVRS! �W-∙RS�������X�Y�Z�[JJ, ∙ MN OP#N OP ∙-#N OP�$∙���∙"N OP%\(]N OP^�����������������_JKL�`�J`
a

b
;
 (4) 

 

where NB is a negative binomial distribution, I>JKL and c>JKL are the parameters of Gamma posterior distribution, de is the total area of the component, and �E are the predicted CFU values. 

 

The posterior predictive inference is summarized as the mean value of a posterior predictive distribution and 90% 

credible intervals. Bayesian model selection has been performed using the Bayes factor (BF) approach, which 

relies on the comparison of posterior odds for different models and the selection of a model, which is most 

supported by the observed data. If there are two competing models represented by two different prior distributions 

parameterized as Gamma (α1, β1) and Gamma (α2, β2) for each model, then the marginal data likelihood is 

calculated as (Eq. 5): 

 

�	�/I� , c� = ) 	-∙i�j! �W-∙i�������X�Y�Z�[JJ, ∙ M�#�∙-#��$∙���∙"�%\	]����������_`�J`
a

b
;
, k = 1,2 (5) 

 

The BF can then be calculated as (Eq. 6): 

 lm = _	j/]$,M$_	j/]n,Mn , (6) 

 

which is the ratio of total probability of observed data to occur under two different models. 

 

Credible intervals were calculated as the inverse of the Gamma distribution function [7]. 
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4.  RESULTS AND DISCUSSION 
 

Tables 3–10 summarize the posterior and predictive inference for the components listed in Table 1. 

 

Table 3: Summary of Posterior and Predictive Inference for Component 9. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 2.3064 0.0090 8.8600 1.7482 0 7 

CNI 2.2889 0.0090 8.7928 1.7350 0 7 

MaxEnt 4.5432 0.2330 13.6102 3.4437 0 11 

Uniform 4.6128 0.2366 13.8189 3.4965 0 11 

 

Table 4: Summary of Posterior and Predictive Inference for Component 73. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 0.8116 0.0031 3.1180 2.2239 0 9 

CNI 0.8094 0.0031 3.1096 2.2180 0 9 

MaxEnt 1.6146 0.0828 4.8370 4.4241 0 14 

Uniform 1.6233 0.0832 4.8631 4.4479 0 14 

 

Table 5: Summary of Posterior and Predictive Inference for Component 300. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 2.2371 0.2623 5.8274 11.1855 1 30 

CNI 2.2315 0.2617 5.8130 11.1579 1 30 

MaxEnt 2.9680 0.5273 7.0401 14.8404 2 37 

Uniform 2.98280 0.5299 7.0750 14.9140 2 37 
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Table 6: Summary of Posterior and Predictive Inference for Component 169. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 7.8120 0.9162 20.3497 4.5700 0 13 

CNI 7.7452 0.9083 20.1757 4.5309 0 13 

MaxEnt 10.2389 1.8192 24.2859 5.9897 0 15 

Uniform 10.4161 1.8507 24.7063 6.0934 0 16 

 

Table 7: Summary of Posterior and Predictive Inference for Component 283. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 4.8129 2.0016 8.6086 57.7549 22 105 

CNI 4.8059 1.9987 8.5961 57.6713 22 105 

MaxEnt 5.2352 2.2799 9.1730 62.8226 26 112 

Uniform 5.2504 2.2865 9.1996 63.0053 26 113 

 

Table 8: Summary of Posterior and Predictive Inference for Component 243. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 48.2413 20.0632 86.2868 14.3759 5 28 

CNI 47.5504 19.7758 85.0510 14.1700 4 27 

MaxEnt 51.1363 22.2700 89.5997 15.2386 5 29 

Uniform 52.6269 22.9191 92.2115 15.6828 5 30 

 

Table 9: Summary of Posterior and Predictive Inference for Component 38. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 15.4988 9.0584 23.3428 154.9887 88 237 

CNI 15.4671 9.0398 23.2949 154.6710 88 236 

MaxEnt 16.0526 9.4952 24.0081 160.5268 92 243 

Uniform 16.1188 9.5343 24.1070 161.1883 93 244 

 

  



 

 PSAM 2019 Topical – Practical use of Probabilistic Safety Assessment, 2-3 December 2019, Stockholm 

Table 10: Summary of Posterior and Predictive Inference for Component 261. 

Prior 

Distribution 

Posterior 

Mean 

Bioburden 

Density – 

λ, CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

Predictive 

Mean, 

CFU 

5
th

 Percentile 

of Predictive 

Distribution 

95
th

 Percentile 

of Predictive 

Distribution 

Jeffreys 1093.5221 857.6728 1353.0301 341.1789 262 428 

CNI 1057.0469 829.0645 1307.8988 329.7986 253 414 

MaxEnt 1032.4675 810.7817 1276.2804 322.1298 248 404 

Uniform 1103.9366 866.9054 1364.6267 344.4282 265 432 

 

As can be seen from Tables 3–6, the posterior mean values are segregated into two groups—one consists of 

Jeffreys and CNI priors, while the other consists of MaxEnt and Uniform. This is primarily due to the fact the α-

shape parameters are the same for the Jeffreys and CNI, and the MaxEnt and Uniform, while the β-rate parameter 

is mostly affected by the total exposure and not the prior parameter value. Since the total count is very small or 

zero for components 9, 73, 300, and 169, the shape parameter is hardly impacted at all, thus producing two groups 

of priors with different posterior mean values. As evident from Tables 7–10, as the total number of counts 

increases, the difference in posterior means between the two groups decreases. The same observation is true for 

all other values reported in Tables 3–10 as the number of total counts increases, the posterior and predictive 

inference becomes similar for all priors used in this paper. This reflects a fundamental property of Bayesian 

inference-prevalence of the data over the prior as the amount of collected data increases. This observation also 

suggests that selection of a “default” best prior is more important for scarce datasets then for more complete 

datasets. The 90% credible intervals get wider as the number of counts increase. This is probably because the 

likelihood function gets wider since for the datasets with the large counts, there is more uncertainty about the 

value of the bioburden density. Predictive credible intervals also correlate with the percentage of sampled area as 

evidenced from Tables 7 and 8 representing components 283 and 243. Component 243 was sampled in its 

entirety; hence, its credible predictive intervals are much narrower than that for Component 283, only 38% of 

which was sampled. The mean values of predictive distribution also correlate with the total CFU count found on 

the component. 

 

The pair-wise comparison of priors for Components 73 and 261 is presented in Tables 11 and 12. It should be 

noted that the BFs do not select the “right” model, rather they indicate how much the data favors one model over 

the other. For the pair-wise comparison, we assume the priors in the rows of Tables 11 and 12 are the null 

hypothesis, while the priors in the columns represent the alternative hypothesis. Diagonals in both tables have 

values of 1 since the hypothesis is compared to itself. From Table 11, it can be seen that CNI has BFs higher than 

1 with respect to all other competing priors. According to the Jeffreys’ scale [6], a BF higher than 5 offers 

substantial evidence in favor of a null hypothesis, one higher than 10 gives strong evidence in favor of a null 

hypothesis, and a BF >150 indicates decisive evidence in favor of null. According to this scale, CNI is strongly 

favored over the Jeffreys prior for component 73, substantially favored over MaxEnt, and decisively favored over 

Uniform prior distribution for the same component. For component 261, the domination of CNI is significantly 

diminished, as seen in Table 12. CNI is weakly favored over Jeffreys and MaxEnt, but substantially favored over 

Uniform. This demonstrates diminishing importance of prior selection for components with substantial CFU 

counts as the data starts to dominate the prior. 

 

Table 11: Pair-wise BFs for Component 73. 

Prior Jeffreys CNI MaxEnt Uniform 

Jeffreys 1 0.0770 0.5491 181.9690 

CNI 12.8842 1 7.0758 2344.5426 

MaxEnt 1.8208 0.1413 1 331.3423 

Uniform 0.0054 0.0004 0.0030 1 
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Table 12: Pair-wise BFs for Component 261. 

Prior Jeffreys CNI MaxEnt Uniform 

Jeffreys 1 0.4598 0.5633 5.4081 

CNI 2.1748 1 1.2251 11.7617 

MaxEnt 1.7751 0.8162 1 9.6003 

Uniform 0.1849 0.0850 0.1041 1 

 

Since BF model selection seems to favor CNI over other priors, in Table 13 we present a comparison of estimates 

obtained using this prior with NASA’s current and legacy approaches. The legacy 3-σ approach is a purely 

frequentist approach based on the assumption of Gaussian statistics for CFU distribution and estimation of the 

mean value of this distribution and its standard deviation, σ [2]. Having estimated the mean value, the 3σ is added 

to it for conservatism. As can be seen from Table 13, this approach systematically produces bioburden values 

higher than the Bayesian approach with a CNI prior. On the other hand, the current weighted average approach 

employs an ad-hoc Bayesian procedure equivalent to using the Uniform prior. In contrast to the Uniform prior 

approach used in this paper, the weighted average uses one more parameter (sample device efficiency) in 

calculation of the effective area. Sampling device efficiency is not a directly observable value, it is an estimate, so 

it had been chosen not to use it in the Bayesian approach described in this paper. While the 3-σ approach 

envisages the calculation of confidence intervals and weighted average does not, neither technique currently 

reports them. In comparison to Bayesian analysis, both techniques generally produce higher values of bioburden 

density, thus ultimately reporting a higher bioburden density at launch and/or resulting in a higher probability of 

inadvertent biological contamination when used in PRA models. 

 

Table 13: Comparison of Bayesian Posterior Inference Using CNI Prior with NASA Weighted Average and 

3-σ Approaches for the Eight Components. 

 Proposed Bayesian Approach  NASA Legacy NASA Current 

Component 

Posterior Mean 

Bioburden 

Density – λ, 

CFU/m
2
 

5
th 

Percentile 

of Posterior 

Distribution 

95
th

 Percentile 

of Posterior 

Distribution 

3 sigma Bioburden 

Density – λ, 

CFU/m
2
 

Weighted Average 

Bioburden Density 

– λ, CFU/m
2
 

9 2.2889 0.0090 8.7928 13.84 27.99 

73 0.8095 0.0032 3.1097 4.87 17.36 

300 2.2315 0.2617 5.8130 5.96 9.54 

169 7.7452 0.9083 20.1757 20.83 33.70 

283 4.8059 1.9987 8.5961 5.17 11.11 

243 47.5504 19.7758 85.0510 130.14 186.70 

38 15.4671 9.0398 23.2949 52.06 9.66 

261 1057.0469 829.0645 1307.8988 2349.53 658.47 

 

It is also instructive to analyze the influence of different priors on the data as presented in Figure 1. It can be seen 

that the Jeffreys and Uniform priors are the least informative in the sense that the posteriors produced using these 

priors are the closest to the likelihood function. Meanwhile, the CNI and MaxEnt priors are the two prior samples 

producing posteriors most distinct from the likelihood. In this sense, these two priors could be called mildly 

informative. Note that the MaxEnt mode is the furthest from the likelihood function, reflecting the fact that the 

MaxEnt has the smallest variance among the four; hence, it pulls the posteriors more strongly toward the prior 

mean value. In comparison to historically generated bioburden values, the mathematical approach employed for 

the InSight mission (weighted average) and the MSL mission (3-sigma) was utilized to calculate the bioburden 

density of the components found in Table 13. Briefly, the weighted average approach implemented on the InSight 

mission and currently the approved methodology for conservatively performing bioburden calculations assumed 

an artificial CFU count of 1, for components where the true count was 0. It then considered the same efficiency 

and pour fraction values utilized to perform the Bayesian posterior inferences and generated bioburden density 

values based on the sum of the raw counts from a given sample set for each sampling date. These individual 
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densities representing data from samples taken on a single date were then combined into a weighted average that 

was reported as the bioburden density for a given component. The MSL approach utilized a 3-sigma approach 

described in [2] to generate bioburden densities. This approach was replicated using the raw data from each 

respective component provided in Table 13. Generally, the calculated bioburden density using either the 3-sigma 

or weighted average approach tended to be a more conservative estimate than that generated using the Bayesian 

methodology. However, neither the weighted average nor the 3-sigma approach provided a distribution of 

bioburden densities and instead reported the maximum upper bound. In addition, these techniques arbitrarily 

applied conservatism to increase confidence in the estimation and overestimate the true bioburden. Although these 

techniques were appropriately implemented during past missions, they do not provide the necessary robustness 

and mathematical rigor for the increasing complexity of upcoming missions. The Bayesian mathematical 

approach not only provides a robust methodology to calculate the distribution of bioburden and associated 

confidence intervals present on spacecraft surfaces, it also allows the incorporation of engineering judgement, as 

well as appropriate conservatism in the estimations, thereby facilitating compliance of more stringent and 

sensitive bioburden requirements. 

 

 

Figure 1. Normalized Posterior Densities and Likelihood Function for Component 261. 

4.  CONCLUSIONS 
 

In the absence of substantial prior information, a common approach is to apply a non-informative prior and then 

proceed with the utilization of a posterior inference. However, the selection of a “default” non-informative or 

weakly informative prior is a problem specifically as it depends on the likelihood model, data and required 

inference uncertainty. In this paper, we analyzed, validated and contrasted four different non-informative priors, 

which can be used to establish a spacecraft bioburden value that can be used to verify at launch bioburden 

requirements for a Mars-destined spacecraft or used to provide an initial bioburden input into the PRA model to 

assess inadvertent spacecraft biological contamination. The priors have been applied to the bioburden data 

collected for the InSight mission. Components with different counts, sampled areas, and total areas were selected 

to validate different priors. In addition, bioburden densities generated using Bayesian analysis have been 

compared with the current (weighted average) and legacy (3-sigma) bioburden calculation approaches used in past 
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NASA missions. It was found that non-informative priors play a significantly more prominent role in posterior 

inference for components with low CFU count data. As the number of counts increase, the prior’s influence 

decreases. However, the uncertainty of posterior inference increases as the number of counts also increases, thus 

reflecting uncertainty in the data with more counts. The same observation is true for predictive inference. 

Bayesian model selection was performed using pair-wise comparison of BFs for different priors. Based on the 

presented data, the CNI prior seems to be the most appropriate prior to use as a “default” prior for the bioburden 

data. As expected, the Jeffreys and Uniform priors proved to be the least informative; however, BF favored CNI 

and MaxEnt priors over them. Comparison with current and legacy methods used by NASA to calculate 

bioburden revealed that both methods tend to overestimate bioburden density, and hence, likely overestimating 

the final reported bioburden and the probability of bio-contamination in the risk assessment models. 

Overestimating the risk may lead to additional cleaning sessions, thus increasing the cost and hardware reliability 

of the mission and may discredit efforts to comply with the increasingly stringent cleanliness requirements for the 

missions of tomorrow. Using non-informative priors is just one approach to perform Bayesian inference; the 

others include the empirical Bayes approach and hierarchical Bayes, both of which will constitute future work. 
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