

Operational use of PSA – An Authority Perspective

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations Stockholm, December 2-3 2019

Per Hellström, SSM (Swedish Radiation Safety Authority), Sweden

"What has been will be again, / what has been done will be done again; / there is nothing new under the sun."

Some statements on use of PRA: ≯

- Prioritisation of safety improvements
- Selection and verification of design options
- PRA can be used to illustrate the single failure criteria and provide input to design solutions
- Experience follow-up
- PRA models are seen as important for conclusions about occurred events
- Basis for training and emergency planning
- Optimisation of surveillance intervals and repair criteria (AOT's)
- PRA system should be further developed and refined to always be available as a tool
- The analysis process itself is of large value for competence development
- PRA must always be kept updated and checked against operational experience

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

seminarium om Probabilistisk 19 november 1980	Riskanalys tisdagen de	en
Arne Andersson	SV, Ringhals	
Lan Bachoiner	OKG	
Ulf Boxe	Studsvik	
Georg Bigmanal	Chalmers	
Dag Diunging	OKG	
Thomas Fakamad	SV	
Bengt Flingson	RKS	
Göran Brikeson	OKG, Simpevarp	
Balf Ectofilt	ASEA-ATOM	
Rune Francian	sv	
Christian Conselue 1	SV	
Hang Cullonking	SKI	
Arne Hedgran	SV	
Matti Hoikkils	KTH	
Per Helleträm	Strålskyddsins	
Herman Holm	Chalmers	
Lars Höcheng	General Atomic Eu	rop
Benny Karlsson	SKI	
Jan Karlegon	KTH	
Lennart Varlagen	OKG	
Thomag Lilia	SKI	
Ambjörn Lindskog	SV	
Bengt Indell	RKS	
Carl-Tohan Nilseen	SKI	
Tore Nilsson	SLF	
Karl-Avel Olazon	SKI	
Rune Orun	SV	
Leif Person	Sydkraft	
Rolf Person	Sydkraft	
Antti Pirto	Studsvik	
Kurt Down	Ind. Kraft AB	
Rastas + uttorl 1 delter	Studsvik	
Biorn Pingetad	TVO	
Vngwe Pogén	SV, Ringhals	
Evelyn Sokoleuski	ASEA-ATOM	
Lare Tithng	RKS	
P-O Waagoman	Sydkraft	
Odd Vestorbour	SV	
Carl-Erik Wikdshl	Scandpower	
Lars Wredenbowg	AKK	
Darb aredenberg	sv	

SSM radiation safety responsibility covers the entire electro-magnetic spectrum

AU-	50.11- 0	0.1.1	100 MU		000		500 TU-	10	15	101911-
0 HZ	50 HZ 3	JU KHZ	100 MHZ	300 MHZ	300	GHZ	500 THZ	10	HZ	10 ¹⁰ HZ

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

Assumptions for this presentation

- Operation refer either to Licensee or the authority's operation
- Use of PSA refer to the use of any information in the PSA, from data collected and used as input to develop the PSA model to the various outputs (results) that can be produced
 - Reliability data, logic, attribute information etc.
 - Calculated frequencies, conditional probabilities, importance factors etc.

Basic principles for SSM oversight

- Maintaining an up-to-date picture of the safety status at each licensee and reactor
- Early awareness of degrading safety culture
- Focus on high level issues
 - But spot checks made on detailed level
- Priority / focus based on safety importance
- Robustness (important to be aware about conditional probabilities)
- Focus on internal processes and internal control of the licensee
 - Example recurring meetings with Licensee PSA groups

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

Responsibility for PSA models

- Utilities are responsible for development of the PSA models
- SSM has access to the utility's models
 - Yearly deliverables
- SSM can run own analyses or extract data for regulatory purposes using the utility's models

Purpose with PSA

Base line PSA

- Show that plant is safe enough meet a safety goal
- Balanced design avoids dominant contributors
- Provides information about strengths / weaknesses basis for prioritisation of improvement areas

Applications

- Graded approach support use of resources commensurate with risk decrease / safety increase
- Specific use of risk information to choose between options with different cost and that are associated with different risk reduction / safety increase.
 - Reporting levels, inspection, maintenance.

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

Requirements for PSA at Licensees

- Must:
 - Be realistic
 - Cover both core damage and radioactive release to environment
 - Cover all modes of operation
 - Cover all events, which can lead to radioactive release to environment
 - Be up-to-date with the plant
 - Consider uncertainties
- Should ('must' in practice):
 - Be used to assess events from operational experience
 - Be used to assess plant changes

In new regulations (work in progress) Guidance on evaluation with probabilistic methods

Basic application / use of PSA

 Identification of strengths and weaknesses and their relative importance to support evaluation and prioritisation of options for improvements in the protection of the public and the environment against exposure to ionizing radiation eventually resulting in a balanced risk profile without cliff-edge effects.

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

New regulations will be more clear about expected uses of PSA results 1(2)

- Informing of education and training programs,
- Identification of scenarios to support development of accident management instructions,
- Informing of programmes for maintenance, inspection and operability readiness testing,
- Evaluation of the safety importance for Structures, Systems and Components.

Expected uses of PSA results 2(2)

- Support to an overall view and prioritisation of radiation safety issues,
- Inform the preparation and scheduling control of work in the plant.
- Inform evaluation of Tech. Specs. Criteria (AOTs etc.)
- Support for justification that requirements to design are met, e.g. single failure criteria, separation, diversity, grace time.
- Support to the interpretation of "reasonably achievable" in meeting design requirements.

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

Actual uses of PSA at Licensees

- Evaluation of plant changes (including SAR and Tech. Spec. changes)
 - Independent core cooling design options
 - Notifications on a case by case basis
 - Technical specification changes Allowed outage times, test intervals (RI-ISI)
 - Exemptions to technical specifications
- LER reporting Risk Follow-up
- Refuelling /shutdown (specific) PSA for planning
- Internal use at Licensees to support investigations on a wide variety of issues including SSM decisions
 - The information in the PSA not only the qualitative and quantitaitive results
 - Information such as location of equipment and cable routing and attributes about equipment design in support of separation and diversity issues

Examples of use of risk information at SSM

- Prioritisation of oversight activities type of oversight, scope and frequency
- Prioritisation of oversight findings
- Prioritisation of reported events
- Prioritisation of open issues (similar to NRC generic issues)
- PSA results can be part of SSM prioritization and assessment

PSAM Topical on Practical Use of Probabilistic Safety Assessment in Operations, Stockholm, December 2-3 2019

Summary / Conclusions

- Requirement that the plant shall be analysed with both deterministic and probabilistic methods
 - However, no formal requirement for applications where probabilistic methods (PSA) are used
- Guidance to requirements indicate many potential uses of PSA
- SSM expect that risk insights (PSA based) are used by licensees to prioritise efforts, inform decision making
 - In principle requirement that safety issues shall be informed by both deterministic and probabilistic methods ->
 - Interpretation is that SSM actually requires use of PSA in relevant cases
 - Probabilistic arguments can play a major role for the overall assessment by SSM
- Communication of the interpretation of results including uncertainties is very important

