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Abstract: This paper proposes a new mathematical methodology to model expert systems with the
ability to sequentially learn from data. To this end, the Plausible Petri nets (PPNs) methodology, first
developed in M. Chiachío et al. [Proceedings of the Future Technologies Conference, San Francisco,
(2016), pp. 165-172 ] is used due to their ability to integrate continuous and discrete dynamics in a single
net model, which allows us to analyse hybrid systems with interaction of diverse sources of information,
like in expert systems. The efficiency of the proposed approach is demonstrated in an expert system model
for railway track inspection management taken as case study using published data from a laboratory
simulation of train loading on ballast, carried out at the Nottingham Railway Test Facility, University of
Nottingham.
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1. INTRODUCTION

Developed countries are facing the onset of a new industrial revolution due to the rapid development
of technologies including artificial intelligence (AI), sensing and robotics. Infrastructures and the built
environment will certainly be part of this revolution due to their massive impact on the economy and
society, and the low cost of these new technologies in relation to the cost of the infrastructure. As a re-
sult, the amount of real-time data and information coming from monitored infrastructures is expected to
increase exponentially over the coming decades. This information has the potential to reduce by billions
the national expenditure on infrastructure asset management [1]. Henceforth, there is a clear need to ex-
ploit the full potential of such infrastructure monitoring data by combining state-of the art AI approaches
(like expert systems) with physics-based models for infrastructure operation and ageing, as a paradigm
shift on what is typically known as Smart Infrastructure. An expert system is an engineered system
that emulates human capacity to make decisions within a specific application domain using execution
rules [2]. By learning from data, these rules can be enabled to dynamically accommodate environmental
and contextual changes, therefore making the expert system more resilient to the new conditions.

This paper proposes an engineering application of an expert system capable to learn from data using
Plausible Petri nets (PPNs). PPNs, firstly developed in [3, 4] by the authors, are a variant of the Petri nets
(PNs) [5, 6] whereby discrete events (e.g., go/no-go decision, maintenance activities, resource availabil-
ity, etc.) can be jointly modelled together with continuous processes whose evolution may be uncertain
(e.g. deterioration process) under the same execution semantics. In PPNs, the uncertainty is modelled
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using states of information [7], which provide a mapping between the possible numerical values of a
state variable with their relative plausibility. These states of information are used to integrate uncertain
information about the system, like information from sensors, expert knowledge, etc., using probability
density functions (PDFs). The methodology is illustrated using a case study about railway track geome-
try inspection. To this end, a specially suited PPN is proposed representing an expert system for railway
track inspection, where several non-linearities like resource availability and operational restrictions are
included as constraints to the system dynamics. The results reveal data learning and uncertainty man-
agement at a system level as key enabling aspects to allow critical infrastructures being operated more
efficiently and autonomously.

The remainder of the paper is organised as follows. Section 2 briefly overviews basic concepts about PNs
before introducing the PPNs and their learning from data in Section 3. Section 4 illustrates and discusses
our approach in application to a case base self-adaptive expert system for railway track inspection. Fi-
nally, Section 5 gives concluding remarks.

2. BASIC CONCEPTS

2.1. Basis of Petri nets

PNs are bipartite directed graphs (digraph) which were introduced in the celebrated thesis dissertation
Kommunikation mit Automaten by Carl Petri in 1962 [5] for modelling the dynamic behaviour of sequen-
tial asynchronous automatons. Two types of nodes are represented in a PN: places and transitions, where
arcs are either from a place to transition or vice versa. A place represents a particular discrete state of the
system or activity being modelled (e.g. considering health management modelling, places can be used
to indicate the current state of a component or sub-system, or if any maintenance activity is currently in
progress). Places are temporarily visited by tokens, the abstract moving units of PNs. The distribution
of tokens over the PN at a specific time of execution is referred to as marking, which is expressed as
a vector indicative of the state of the PN. The transitions are responsible of the dynamic behaviour of
the PN, and enable the system to move from one state to another. For example, a component wear pro-
cess is one of such processes which can be reflected using a transitions [10]. In practical applications
of PNs, transitions are typically assigned with time delays which are useful for performance evaluation
and scheduling problems of dynamical systems [6]. The resulting PNs are called Timed Petri nets if the
delays are deterministic, and Stochastic Petri nets if the delays are randomly chosen by sampling distri-
butions. In such cases, a transition is fired once its time delay has passed. In graphical representation,
places are typically expressed using circles while transitions are drawn as bars or boxes. Arcs are labeled
with their corresponding weights, non-negative integer values indicating the amount of parallel arcs (1
by default). Figure 1 illustrates a sample PN of three places (p1, p2, p3), and one transition (t1).

From a mathematical perspective, a PN is defined as a tuple N =
〈
P,T,E,W,M0

〉
, where P ∈ Nnp is

an np-dimensional set of places, T ∈ Nnt is an nt-dimensional set of transitions, E ⊆ (P × T) ∪ (T × P)
represents a set of directed arcs connecting places to transitions and vice versa, W is a set of non-
negative numerical values (1 by default) acting as weights applied to each arc within E, and M0 is a
vector containing the initial distribution of tokens over the set of places, and is referred to as the initial
marking. The following notation will also be considered:

•t is the set of input places of transition t, also referred to as the pre-set of t;

t• is the set of output places of transition t, also referred to as the post-set of t;

At a certain k ∈ N, the dynamics of a PN can be described through a state equation defined as follows
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Figure 1: Example of Petri net of three places and one transition.

[6]:
Mk+1 = Mk + AT uk (1)

where uk = (u1,k, u2,k, . . . , unt ,k)T is the firing vector, whose elements are binary values taking 1 if transi-
tion ti is fired, and 0 otherwise. A is an nt × np matrix typically referred to as the incidence matrix, which
can be obtained as the result of subtracting the forward (A+) and backward (A−) incidence matrices
respectively, i.e.:

A = A+ − A− (2)

where A+ =
[
a+

i j

]
, A− =

[
a−i j

]
, i = 1, . . . , nt, j = 1, . . . , np. The element a+

i j is the weight of the arc from
transition ti ∈ T to output place p j ∈ P, whereas a−i j is the weight of the arc to transition ti from input
place p j.

In PNs, any transition ti needs to be enabled as a condition to be fired, which occurs when each input
place of ti is marked with at least a−i j tokens. Mathematically:

M( j) > a−i j ∀p j ∈
•ti (3)

where M( j) ∈ N is the marking for place p j.

3. PLAUSIBLE PETRI NETS

Plausible Petri nets (PPNs) are a variant of PNs recently developed by the authors, which are based on
a combination of discrete and continuous numerical processes whose values may be uncertain (plausi-
ble). Two interacting subnets form the PPN graph: 1) a symbolic subnet, where the tokens are objects
in the sense of integer moving units, as in classical PNs [5], 2) a numerical subnet, where tokens are
states of information 2, which are denoted using superscripts (N) and (S), respectively. In particular,
the set of places P are partitioned into subset P(N) ∈ Nnp and P(S) ∈ Nn′p , such that P(N) ∪ P(S) = P,
and P(N) ∩ P(S) = ∅. Superscripts np, n′p represent the number of numerical and symbolic places, re-
spectively. Analogously, transitions T are partitioned into numerical transitions T(N) ∈ Nnt and symbolic
transitions T(S) ∈ Nn′t , where T(N) ∪ T(S) = T, and T(N) ∩ T(S) , ∅. In this case, nt, n′t denote the
number of numerical and symbolic transitions, respectively. Observe that those transitions that belong to
T(N) ∩ T(S) are referred to as mixed transitions [3, 4].

In PPNs, the referred states of information about a system state variable xk ∈ X are denoted by the
PDFs f p(xk) and f t(xk) for numerical places and transitions, respectively. Thus, the marking Mk of a
PPN at a certain time k consists in a combined vector Mk =

(
M(N)

k ,M(S)
k

)
, where M(N)

k and M(S)
k are

column vectors of normalised PDFs and integer values, respectively. Moreover, in PPNs there exist arc
weights for the symbolic places as in classical, denoted by a

′+
i j , a

′−
i j ∈ W(S) ⊂ N, whereby the incidence

2A state of information can be described by a set of numerical values about a state variable, along with a mapping over
them that assigns each numerical value with its relative plausibility [8, 7].
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Figure 2: Illustration of a sample PPN with two numerical places (p(N)
1 , p(N)

2 ), two symbolic places (p(S)
1 ,p(S)

2 ),
and two transitions (t1,t2), of which one is a mixed transition.

matrix A(S) can be obtained by Eq. (2). The arc weights for the numerical places are denoted by
a+

i j, a
−
i j ∈ W(N) ⊂ R+, such that A(N) =

[
a+

i j

]
−

[
a−i j

]
, and i = 1, . . . , nt, j = 1, . . . , np, where nt, np

represent the amount of numerical transitions and numerical places of the PPN, respectively. Note that
the arc weights from the symbolic subnet, e.g.

(
a′11
−
)

are differentiated from the numerical ones using
an accent (′). A PPN model is shown in Figure 2 for illustration purposes. Note that in the graphical
representation, numerical nodes are drawn using double lines, with single lines used for the others. The
dashed rectangles shown in Figure 2 highlight the pre-set and post-set of t1.

3.1. Execution rules

In PPNs, the marking evolution of the symbolic subnet corresponds to the state equation of a PN [6]
(recall Eq. [1]). However, the evolution of M(N)

k relies on an ad hoc information flow dynamics based on
two basic operations referred to as [3]: the conjunction and disjunction of states of information [8, 7]. In
these operations, the logic operators and (∧) and or (∨) are invoked to allow the continuos information
from the numerical subnet to be exchanged into the PPN.

From this standpoint, the dynamics of PPNs is formulated under the adoption of the following rules [4]:

1. An input arc from place p(N)
j to transition ti ∈ T(N) conveys a state of information given by

a−i j
(
f p j ∧ f ti)(xk), which remains in p(N)

j after transition ti has fired;

2. Transition ti ∈ T(N) produces to an output arc a state of information given by a+
i j
(
f
•ti ∧ f ti)(xk),

where f
•ti(xk) denotes the resulting density from the disjunction of the states of information of the

pre-set of ti. The normalised version of f
•ti(xk) can be obtained as:

f
•Pti (xk) =

1
β

(
f p1 + f p2 + · · · + f pm

)
(xk) (4)

where β is a constant, and p1, . . . , pm ∈
•ti ⊂ P(N);

3. After firing numerical transition ti, the state of information resulting in place p(N)
j from the post-set

of ti, is the disjunction of the state of information f p j(xk) (the previous state of information), and
a+

i j
(
f ti ∧ f

•ti)(xk) (the information produced after firing transition ti). Mathematically:

f p j(xk+1) =
(

f p j ∨ a+
i j
(
f ti ∧ f

•ti))(xk) (5)
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Note that execution rules given above for PPNs are, in general, difficult to evaluate analytically since
the conjunction of states of information requires the evaluation of normalising constants involving an
intractable integral. Particle methods [11] can be used in these cases to circumvent the evaluation of the
normalising constant with a feasible computational cost. In particle methods, a set of N samples

{
x(n)}N

n=1
with associated weights

{
ω(n)}N

n=1 are used to obtain an approximation for the required density function
[e.g.

(
fa ∧ fb

)
(x)], as follows: (

fa ∧ fb
)
(x) ≈

N∑
n=1

ω(n)δ
(
x − x(n)) (6)

where δ is the Dirac delta and x(n) ∼
(
fa ∧ fb

)
(x). The particle weight ω(n) represents the likelihood value

of x(n), and is representative of the plausibility of x(n) when it is distributed according to
(
fa ∧ fb

)
(x). It

can be evaluated for the case of X being a linear space as follows:

ω(n) =
fa(x(n)) fb(x(n))∑N

n=1 fa(x(n)) fb(x(n))
(7)

3.1.1. Transition firing in PPNs

In PPNs, any transition ti ∈ T is fired at time k if the delay time has passed and:

1. Every symbolic place from the pre-set of ti has enough tokens according to their input arc weight,
as in classical PNs (recall Eq. (3));

2. Each of the conjunction of states of information between f ti and f p j

k is possible, where p(N)
j be-

longs to the pre-set of ti;

3. Conditions (a) and (b) are both satisfied when ti is a mixed transition, i.e. ti ∈ (T(S) ∩ T(N)).

Note from Condition (b) that a conjunction, e.g.
(
f p j

k ∧ f ti
k
)
(xk), is possible if

(
f p j

k ∧ f ti
k
)
(xk) , ∅ [8]. Note

also that when any of the states of information involved in a conjunction is the homogenous density (also
referred to as “non-informative density") µ(xk) of the state space of considerationX, then the conjunction
is always possible [8, 4], thus Condition (b) is automatically fulfilled. This argument is important in terms
of using PPNs in practical examples, as will be demonstrated in next section.

As a matter of fact, PPNs have the property that an input arc from place p(N)
j to transition ti ∈ T(N)

carries a state of information given by the posterior density function of state variable xk by just assuming
that f ti(xk) acts as likelihood function for a set of data yk ∈ D (which can be denoted as p(yk|xk)) and
that the state-space X is a linear space [8]. This interesting property will be further exploited within the
context of an engineering case study.

4. CASE STUDY

The PPN methodology explained above is exemplified here using data about permanent axial strain in
a ballasted railway track taken from the the literature [12]. The interest of this engineering application
resides in the need for AI methodologies which allow automated and adaptive decisions about mainte-
nance activities and inspection actions in railway networks based on monitoring data [13]. In this case
study, a PPN is developed to act as an expert system for railway track management, incorporating a
physics-based model of track geometry degradation, data-learning, along with a number of operational
rules, which provide the basis for triggering a number of control operations and inspection activities.
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The data in this case study consists of a set of non-regularly scheduled (noisy) measurements Y =

(y1, y2, . . . , yk) of track settlement taken from Aursudkij et al. [12], which are sequentially introduced
to the system at a set of discrete loading cycles. The test, as reported in [12], was conducted on the Rail-
way Test Facility of the University of Nottingham [14], and simulates an axle load of approximately 20
tonnes over a ballasted track section comprised of 0.9 [m] (depth) subgrade material and 0.3 [m] (depth)
ballast material. The dataset is reproduced in Table 1.

4.1. PPN model

The PPN-based expert system for railway track inspection considered in this case study is depicted in Fig-
ure 3. The system represents a number of rules which autonomously raise an alarm (e.g. "Line closure")
or trigger inspection activities of a particular railway track section subjected to traffic loading degrada-
tion. Observe that the PPN is comprised of one numerical place (p(N)

1 ), seven symbolic places (p(S)
1 to

p(S)
7 ), three mixed transitions (t1 to t3), and four symbolic transitions (t4 to t7). The stochastic model for

track degradation is embedded within the numerical place p(N)
1 (details of the railway track degradation

model is omitted here for clarity and lack of space. The reader is referred to [15] for further description,
and to [16] by the authors to obtain the implementation details). The measurements y1, y2, . . . , yk are
assumed to come with a 5% white-noise type error, hence yk ∼ N(xk, σwk ), where σwk = 0.05‖yk‖. This
PDF represents the state of information within transition t1, which is given by:

f t1(xk) = p(yk|xk) =
(
2πσ2

wk

)− 1
2 exp

−1
2

(
yk − xk

σwk

)2 (8)

Note that each time a new measurement arrives, transition t1 is enabled, which by the PPN execution
rules explained in § 3.1, leads to the conjunction of the states of information of p(N)

1 and t1. Note that,
this conjunction leads to the posterior PDF and therefore to the update of the degradation variable xk,
except for a normalising constant.

An overview of the complete set of transitions is provided in Table 2. Observe from this table that the
mixed transitions t2 and t3 are defined based on condition [4], henceforth, their activation is prescribed
for the state variable xk on fulfilling the condition xk ∈ Ci, where subspaces Ci, i = 2, 3 are specified in
the third column of Table 2. These transitions are driven by states of information that are expressed by
Dirac Delta density functions [8], i.e., f ti = ICi(xk), i = 2, 3. In Table 2, function H : X → R denotes
the differential entropy (DE)3 of the degradation variable xk , and E f p1 [xk] denotes the expectation of xk

with respect to f p1 . From a computational point of view, note that the conditions in the mixed transitions
t2 and t3 specify numerical rules used by the expert system to raise an alarm or trigger an inspection
action.

4.2. Results

By evaluating the proposed PPN-based system, changes in the numerical and discrete track states are
obtained with reference to a number of automated actions which are activated through firing transitions

3The differential entropy of a stochastic variable xk, is a measure of the uncertainty about the values taken by xk, which is
given by 1/2 ln [(2πe)var(xk)]

Table 1: Experimental sequence of permanent unitary settlement (strain) data used for calculations, taken from
[12] and obtained using the University of Nottingham Railway Test Facility (RTF).

Loading cycles k, (×103) 0 0.625 1.25 2.5 5 10 20 30 50 75
Unitary settlement [dimensionless] 0 0.0017 0.0045 0.0058 0.0075 0.0087 0.0104 0.011 0.012 0.01275
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Figure 3: PPN of the case study presented in § 4. p(N)
1 is where on-line predictions of track state take place. The

predictions are updated as new data are collected. Note that a number of inhibitor arcs (those ending with a small
circle) are used to prevent a transition from firing once its pre-set places are marked. A cold transition (ε) is used
to represent the data arrival, which are assumed to be available at a set of non-regularly scheduled time instants, as
shown in Table 1.

Table 2: Description of the transitions shown in Figure 3. In the third column (rules), the delays are expressed in
cycles. The last column provides a description of the action taken by the PPN-expert system when the rules are
met. PI: Periodic inspections, OI: opportunistic inspections, LC: Line Closure.

ID Type Rule State of information Action
t1 Mixed – f t1 ∼ p(yk|xk) (Likelihood) Update predictions
t2 Mixed H(xk) > −4.8 f t2 ∼ IC2(xk) Activates OI
t3 Mixed E f p1 [xk] > 0.014 [m] f t3 ∼ IC3(xk) Switches to LC
t4 Symbolic τ4 = 0 (delay) – Switches to OI
t5 Symbolic τ5 = 0 (delay) – Switches to PI
t6 Symbolic τ6 ∼ N(1, 1) (delay) – Activates OI
t7 Symbolic τ7 ∼ N(24, 1) (delay) – Concludes inspections

t1 to t7. The execution rules given in § 3.1 are applied to obtain the overall system evolution described
through the marking Mk, k > 0. In particular, the results for the estimated degradation variable in place
p(N)

1 along with its 5% − 95% probability bands, are depicted in Figure 4 for k = 0 → 75 × 103 cycles
(see the leftmost panel). Panel 4b illustrates the temporal evolution of the uncertainty in the estimation
of xk within place p(N)

1 , with indication of the reference level when inspections are needed. This un-
certainty is expressed and quantified through the DE. The observed drops in the sequence of DE values
in Figure 4b correspond to the uncertainty reduction due to Bayesian learning when new measurements
become available. Observe from these results that there is a period required by the PPN model to learn
from the data, which corresponds to the loading cycles in the interval (0, 5 · 103]. After this learning
period, not only does the precision of the prediction of xk clearly improve with time (predicted values
of xk closer to data yk), but also the uncertainty of the prediction gradually tends to diminish, which is
numerical evidence of the Bayesian learning taking place in p(N)

1 . Figure 5 provides a plot of the history
of the tokens visiting place p(S)

2 during the overall period of evaluation k = 0 → 75 × 103, and indi-
cates the sequence of activated inspections within that period. Note that at the beginning of the process
(specifically the first 2,500 cycles), inspections are activated even when the uncertainty (DE) about xk
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transition t2.
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Figure 5: Plot of visiting tokens in place p(S)
2 as a response of the PPN from Figure 3 using on-line data from the

dataset (Y) shown in Table 1.

in p(N)
1 is below the threshold value. According to the PPN graph in Figure 3, these correspond to PIs

which must be carried out until at least two measurements are available, whereupon p(S)
6 is marked and

the system switches from PI to OI mode, as explained above. Note also from Figure 5 that a number
of tokens visit place p(S)

2 from cycle k = 2.5 × 103 to about k = 2 × 104, corresponding to inspection
activities triggered because the uncertainty of the degradation variable xk in this initial period passes the
threshold several times, i.e. (DE > −4.8), activating t2. After this initial period, the system identifies that
no more inspections are needed. Observe that these results reveal that the PPN autonomously responds
to the arrival of data through adaptation so that the sequence of discrete states (like inspection activities)
are altered in response to the most up-to-date information from data Y . The results also show that the
Bayesian learning of the PPN serves to control the uncertainty of the track settlement predictions so as
to avoid triggering unnecessary inspections.

5. CONCLUSIONS

This paper presented a new methodology to model PPN-based expert systems capable to adapt their be-
haviour as long as new data arrive. An engineering case study has been presented, which uses experimen-
tal data of railway track degradation to demonstrate how monitoring data and model-based knowledge
about track degradation can be integrated within a PPN-based expert system modelled using a PPN. The
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results revealed that expert systems modelled using PPNs can respond to the arrival of data through adap-
tation so that the system can automatically respond to the most up-to-date information from data. Be-
sides, in application to the railway track management problem, the results demonstrated the potential of
the proposed methodology to shifts the burden of managing a track section from asset managers to an
autonomous system that acts under the guidance of monitoring data (when available), and maintenance
policies (implemented as rules), which are considered as inputs to our system.
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